Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nano Lett ; 22(14): 5667-5673, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848767

RESUMO

The optimization of superconducting thin-films has pushed the sensitivity of superconducting nanowire single-photon detectors (SNSPDs) to the mid-infrared (mid-IR). Earlier demonstrations have shown that straight tungsten silicide nanowires can achieve unity internal detection efficiency (IDE) up to λ = 10 µm. For a high system detection efficiency (SDE), the active area needs to be increased, but material nonuniformity and nanofabrication-induced constrictions make mid-IR large-area meanders challenging to yield. In this work, we improve the sensitivity of superconducting materials and optimize a high-resolution nanofabrication process to demonstrate large-area SNSPDs with unity IDE at 7.4 µm. Our approach yields large-area meanders down to 50 nm width, with average line-width roughness below 10%, and with a lower impact from constrictions compared to previous demonstrations. Our methods pave the way to high-efficiency SNSPDs in the mid-IR band with potential impacts on astronomy, imaging, and physical chemistry.


Assuntos
Nanofios , Condutividade Elétrica , Desenho de Equipamento , Fotometria , Fótons
2.
Appl Opt ; 60(7): 1958-1965, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690287

RESUMO

With the availability of high-power (milliwatts) single-mode tunable laser sources that operate at room temperature across the infrared (IR) region, tunable laser spectrometers have seen an explosion of growth in applications that include commercial, Earth and planetary science, and medical and industrial sensing. While the laser sources themselves have shown steady improvement, the detection architecture of using a single-element detector at one end of a multipass cell has remained unchanged over the last few decades. We present here an innovative new approach using a detector array coupled to an IR-transmissive mirror to image all or part of the multipass spot pattern of the far mirror and record spectra for each pixel. This novel approach offers improved sensitivity, increased dynamic range, laser power normalization, contaminant subtraction, resilience to misalignment, and reduces the instrument power requirement by avoiding the need for "fringe-wash" heaters. With many tens of pixels representing each spot during the laser spectral scan, intensity and optical fringe amplitude and phase information are recorded. This allows selection and manipulation (e.g., co-addition, subtraction) of the pixel output spectra to minimize optical interference fringes thereby increasing sensitivity. We demonstrate a factor of ∼20 sensitivity improvement over traditional single-element detection. Dynamic range increase of a factor of ∼100 is also demonstrated through spot selection representing different pathlengths. Additionally, subtracting the spectrum of the first spot from that of the higher pass normalizes the laser power and removes the contribution of contaminant gas and fringes in the fore-optics region. These initial results show that this imaging method is particularly advantageous for multi-channel laser spectrometers, and, once the image field is analyzed, pixel selection can be used to minimize data rate and volume collection requirements. This technique could be beneficial to enhanced-cavity detection schemes.

3.
Nano Lett ; 20(5): 3513-3520, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32338926

RESUMO

Additive manufacturing at small scales enables advances in micro- and nanoelectromechanical systems, micro-optics, and medical devices. Materials that lend themselves to AM at the nanoscale, especially for optical applications, are limited. State-of-the-art AM processes for high-refractive-index materials typically suffer from high porosity and poor repeatability and require complex experimental procedures. We developed an AM process to fabricate complex 3D architectures out of fully dense titanium dioxide (TiO2) with a refractive index of 2.3 and nanosized critical dimensions. Transmission electron microscopy (TEM) analysis proves this material to be rutile phase of nanocrystalline TiO2, with an average grain size of 110 nm and <1% porosity. Proof-of-concept woodpile architectures with 300-600 nm beam dimensions exhibit a full photonic band gap centered at 1.8-2.9 µm, as revealed by Fourier-transform infrared spectroscopy (FTIR) and supported by plane wave expansion simulations. The developed AM process enables advances in 3D MEMS, micro-optics, and prototyping of 3D dielectric PhCs.

4.
Nano Lett ; 20(3): 2163-2168, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32091221

RESUMO

While single-pixel superconducting nanowire single photon detectors (SNSPDs) have demonstrated remarkable efficiency and timing performance from the UV to near-IR, scaling these devices to large imaging arrays remains challenging. Here, we propose a new SNSPD multiplexing system using thermal coupling and detection correlations between two photosensitive layers of an array. Using this architecture with the channels of one layer oriented in rows and the second layer in columns, we demonstrate imaging capability in 16-pixel arrays with accurate spot tracking at the few-photon level. We also explore the performance trade-offs of orienting the top layer nanowires parallel and perpendicular to the bottom layer. The thermally coupled row-column scheme is readily able to scale to the kilopixel size with existing readout systems and, when combined with other multiplexing architectures, has the potential to enable megapixel scale SNSPD imaging arrays.

5.
Opt Express ; 24(13): 14589-95, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410611

RESUMO

We report continuous-wave operation of single-mode quantum cascade (QC) lasers emitting near 7.4 µm with threshold power consumption below 1 W at temperatures up to 40 °C. The lasers were fabricated with narrow, plasma-etched waveguides and distributed-feedback sidewall gratings clad with sputtered aluminum nitride. In contrast to conventional buried-heterostructure (BH) devices with epitaxial sidewall cladding and in-plane gratings, the devices described here were fabricated without any epitaxial regrowth processes, yet they exhibit power consumption comparable to the lowest-dissipation BH QC lasers reported to date. These low-dissipation devices are designed primarily as light sources for infrared spectroscopy instruments with limited volume, mass, and power budgets.

6.
Opt Express ; 23(26): 33310-7, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831996

RESUMO

Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 µm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

7.
Opt Express ; 23(3): 2446-50, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836112

RESUMO

For high-sensitivity absorption spectroscopy, single-mode light sources capable of emitting high optical output power in the 3 to 5 µm wavelength range are vital. Here, we report on interband cascade lasers that emit 20 mW of optical power in a single spectral mode at room temperature and up to 40 mW at 0 °C using second-order laterally coupled Bragg gratings for distributed feedback. The lasers employ a double-ridge design with a narrow 3-µm-wide top ridge to confine the optical mode and a 9-µm-wide ridge for current confinement. The lasers were developed for an integrated cavity output spectroscopy instrument for stratospheric detection of hydrogen chloride at a wavelength of 3.3746 µm and emit at the target wavelength with more than 34 mW of single-mode power.

8.
Nano Lett ; 14(6): 3284-92, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24844697

RESUMO

Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90° waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power-splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 × 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.

9.
Opt Express ; 21(1): 1317-23, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389025

RESUMO

We demonstrate index-coupled distributed-feedback diode lasers at 2.65 µm that are capable of tuning across strong absorption lines of HDO and other isotopologues of H2O. The lasers employ InGaAsSb/AlInGaAsSb multi-quantum-well structures grown by molecular beam epitaxy on GaSb, and single-mode emission is generated using laterally coupled second-order Bragg gratings etched alongside narrow ridge waveguides. We verify near-critical coupling of the gratings by analyzing the modal characteristics of lasers of different length. With an emission facet anti-reflection coating, 2-mm-long lasers exhibit a typical current threshold of 150 mA at 20 °C and are capable of emitting more than 25 mW in a single longitudinal mode, which is significantly higher than the output power reported for loss-coupled distributed-feedback lasers operating at similar wavelengths.

10.
Sci Adv ; 9(30): eadf9711, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494442

RESUMO

Widely tunable coherent sources are desirable in nanophotonics for a multitude of applications ranging from communications to sensing. The mid-infrared spectral region (wavelengths beyond 2 µm) is particularly important for applications relying on molecular spectroscopy. Among tunable sources, optical parametric oscillators typically offer some of the broadest tuning ranges; however, their implementations in nanophotonics have been limited to narrow tuning ranges in the infrared or to visible wavelengths. Here, we surpass these limits in dispersion-engineered periodically poled lithium niobate nanophotonics and demonstrate ultrawidely tunable optical parametric oscillators. Using 100 ns pulses near 1 µm, we generate output wavelengths tunable from 1.53 µm to 3.25 µm in a single chip with output powers as high as tens of milliwatts. Our results represent the first octave-spanning tunable source in nanophotonics extending into the mid-infrared, which can be useful for numerous integrated photonic applications.

11.
Nat Commun ; 14(1): 6549, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848411

RESUMO

Optical frequency comb is an enabling technology for a multitude of applications from metrology to ranging and communications. The tremendous progress in sources of optical frequency combs has mostly been centered around the near-infrared spectral region, while many applications demand sources in the visible and mid-infrared, which have so far been challenging to achieve, especially in nanophotonics. Here, we report widely tunable frequency comb generation using optical parametric oscillators in lithium niobate nanophotonics. We demonstrate sub-picosecond frequency combs tunable beyond an octave extending from 1.5 up to 3.3 µm with femtojoule-level thresholds on a single chip. We utilize the up-conversion of the infrared combs to generate visible frequency combs reaching 620 nm on the same chip. The ultra-broadband tunability and visible-to-mid-infrared spectral coverage of our source highlight a practical and universal path for the realization of efficient frequency comb sources in nanophotonics, overcoming their spectral sparsity.

12.
Nat Mater ; 9(3): 239-44, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20154692

RESUMO

Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array's volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

13.
Nano Lett ; 10(10): 4222-7, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20857941

RESUMO

Metamaterial designs are typically limited to operation over a narrow bandwidth dictated by the resonant line width. Here we report a compliant metamaterial with tunability of Δλ ∼ 400 nm, greater than the resonant line width at optical frequencies, using high-strain mechanical deformation of an elastomeric substrate to controllably modify the distance between the resonant elements. Using this compliant platform, we demonstrate dynamic surface-enhanced infrared absorption by tuning the metamaterial resonant frequency through a CH stretch vibrational mode, enhancing the reflection signal by a factor of 180. Manipulation of resonator components is also used to tune and modulate the Fano resonance of a coupled system.

14.
Nano Lett ; 10(12): 4851-7, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21028908

RESUMO

The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wavelengths. Propagation loss is determined independently of insertion loss by measuring the transmission through plasmonic waveguides of varying length, and we find a characteristic surface-plasmon propagation length of 51 ± 4 µm at a free-space wavelength of λ = 1550 nm. We also demonstrate efficient coupling to whispering-gallery modes in plasmonic ring resonators with an average bending-loss-limited quality factor of 180 ± 8.

15.
Opt Express ; 18(11): 11192-201, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20588978

RESUMO

We have integrated lithographically patterned VO2 thin films grown by pulsed laser deposition with silicon-on-insulator photonic waveguides to demonstrate a compact in-line absorption modulator for use in photonic circuits. Using single-mode waveguides at lambda=1550 nm, we show optical modulation of the guided transverse-electric mode of more than 6.5 dB with 2 dB insertion loss over a 2-microm active device length. Loss is determined for devices fabricated on waveguide ring resonators by measuring the resonator spectral response, and a sharp decrease in resonator quality factor is observed above 70 degrees C, consistent with switching of VO2 to its metallic phase. A computational study of device geometry is also presented, and we show that it is possible to more than double the modulation depth with modified device structures.


Assuntos
Eletrodos , Refratometria/instrumentação , Telecomunicações/instrumentação , Compostos de Vanádio/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Metais/química , Transição de Fase , Integração de Sistemas
16.
Opt Express ; 17(9): 7479-90, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19399126

RESUMO

We investigate the light emission properties of electrical dipole emitters inside 2-dimensional (2D) and 3-dimensional (3D) silicon slot waveguides and evaluate the spontaneous emission enhancement (F(p)) and waveguide coupling ratio (beta). Under realistic conditions, we find that greater than 10-fold enhancement in F(p) can be achieved, together with a beta as large as 0.95. In contrast to the case of high Q optical resonators, such performance enhancements are obtained over a broad wavelength region, which can cover the entire emission spectrum of popular optical dopants such as Er. The enhanced luminescence efficiency and the strong coupling into a limited set of well-defined waveguide modes enables a new class of power-efficient, CMOS-compatible, waveguide-based light sources.


Assuntos
Iluminação/instrumentação , Refratometria/instrumentação , Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
17.
Nat Commun ; 2: 517, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044996

RESUMO

Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials comprising only lossless dielectric materials and highly reflective noble metals represents a new research direction. Here we demonstrate an ultrathin (260 nm) plasmonic super absorber consisting of a metal-insulator-metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays. Our super absorber yields broadband and polarization-independent resonant light absorption over the entire visible spectrum (400-700 nm) with an average measured absorption of 0.71 and simulated absorption of 0.85. Proposed nanostructured absorbers open a path to realize ultrathin black metamaterials based on resonant absorption.


Assuntos
Luz , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Absorção , Nanoestruturas/química
18.
Philos Trans A Math Phys Eng Sci ; 369(1950): 3447-55, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21807720

RESUMO

Metamaterial designs are typically limited to a narrow operating bandwidth that is predetermined by the fabricated dimensions. Various approaches have previously been used to introduce post-fabrication tunability and thus enable active metamaterials. In this work, we exploit the mechanical deformability of a highly compliant polymeric substrate to achieve dynamic, tunable resonant frequency shifts greater than a resonant linewidth. We investigate the effect of metamaterial shape on the plastic deformation limit of resonators. We find that, for designs in which the local strain is evenly distributed, the response is elastic under larger global tensile strains. The plastic and elastic limits of resonator deformation are explored and the results indicate that, once deformed, the resonators operate within a new envelope of elastic response. We also demonstrate the use of coupled resonator systems to add an additional degree of freedom to the frequency tunability and show that compliant substrates can be used as a tool to test coupling strength. Finally, we illustrate how compliant metamaterials could be used as infrared sensors, and show enhancement of an infrared vibration absorption feature by a factor of 225.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA