Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(16): 6724-6731, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35900125

RESUMO

The ever-increasing rate of medical device implantations is met by a proportionately high burden of implant-associated infections. To mitigate this threat, much research has been directed toward the development of antibacterial surface modifications by various means. One recent approach involves surfaces containing sharp nanostructures capable of killing bacteria upon contact. Herein, we report that the mechanical interaction between Staphylococcus aureus and such surface nanostructures leads to a sensitization of the pathogen to the glycopeptide antibiotic vancomycin. We demonstrate that this is due to cell wall damage and impeded bacterial defenses against reactive oxygen species. The results of this study promise to be impactful in the clinic, as a combination of nanostructured antibacterial surfaces and antibiotics commonly used in hospitals may improve antimicrobial therapy strategies, helping clinicians to prevent and treat implant-associated infections using reduced antibiotic concentrations instead of relying on invasive revision surgeries with often poor outcomes.


Assuntos
Nanoestruturas , Infecções Estafilocócicas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
2.
Clin Orthop Relat Res ; 480(11): 2232-2250, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001022

RESUMO

BACKGROUND: A nanostructured titanium surface that promotes antimicrobial activity and osseointegration would provide the opportunity to create medical implants that can prevent orthopaedic infection and improve bone integration. Although nanostructured surfaces can exhibit antimicrobial activity, it is not known whether these surfaces are safe and conducive to osseointegration. QUESTIONS/PURPOSES: Using a sheep animal model, we sought to determine whether the bony integration of medical-grade, titanium, porous-coated implants with a unique nanostructured surface modification (alkaline heat treatment [AHT]) previously shown to kill bacteria was better than that for a clinically accepted control surface of porous-coated titanium covered with hydroxyapatite (PCHA) after 12 weeks in vivo. The null hypothesis was that there would be no difference between implants with respect to the primary outcomes: interfacial shear strength and percent intersection surface (the percentage of implant surface with bone contact, as defined by a micro-CT protocol), and the secondary outcomes: stiffness, peak load, energy to failure, and micro-CT (bone volume/total volume [BV/TV], trabecular thickness [Tb.Th], and trabecular number [Tb.N]) and histomorphometric (bone-implant contact [BIC]) parameters. METHODS: Implants of each material (alkaline heat-treated and hydroxyapatite-coated titanium) were surgically inserted into femoral and tibial metaphyseal cancellous bone (16 per implant type; interference fit) and in tibial cortices at three diaphyseal locations (24 per implant type; line-to-line fit) in eight skeletally mature sheep. At 12 weeks postoperatively, bones were excised to assess osseointegration of AHT and PCHA implants via biomechanical push-through tests, micro-CT, and histomorphometry. Bone composition and remodeling patterns in adult sheep are similar to that of humans, and this model enables comparison of implants with ex vivo outcomes that are not permissible with humans. Comparisons of primary and secondary outcomes were undertaken with linear mixed-effects models that were developed for the cortical and cancellous groups separately and that included a random effect of animals, covariates to adjust for preoperative bodyweight, and implant location (left/right limb, femoral/tibial cancellous, cortical diaphyseal region, and medial/lateral cortex) as appropriate. Significance was set at an alpha of 0.05. RESULTS: The estimated marginal mean interfacial shear strength for cancellous bone, adjusted for covariates, was 1.6 MPa greater for AHT implants (9.3 MPa) than for PCHA implants (7.7 MPa) (95% CI 0.5 to 2.8; p = 0.006). Similarly, the estimated marginal mean interfacial shear strength for cortical bone, adjusted for covariates, was 6.6 MPa greater for AHT implants (25.5 MPa) than for PCHA implants (18.9 MPa) (95% CI 5.0 to 8.1; p < 0.001). No difference in the implant-bone percent intersection surface was detected for cancellous sites (cancellous AHT 55.1% and PCHA 58.7%; adjusted difference of estimated marginal mean -3.6% [95% CI -8.1% to 0.9%]; p = 0.11). In cortical bone, the estimated marginal mean percent intersection surface at the medial site, adjusted for covariates, was 11.8% higher for AHT implants (58.1%) than for PCHA (46.2% [95% CI 7.1% to 16.6%]; p < 0.001) and was not different at the lateral site (AHT 75.8% and PCHA 74.9%; adjusted difference of estimated marginal mean 0.9% [95% CI -3.8% to 5.7%]; p = 0.70). CONCLUSION: These data suggest there is stronger integration of bone on the AHT surface than on the PCHA surface at 12 weeks postimplantation in this sheep model. CLINICAL RELEVANCE: Given that the AHT implants formed a more robust interface with cortical and cancellous bone than the PCHA implants, a clinical noninferiority study using hip stems with identical geometries can now be performed to compare the same surfaces used in this study. The results of this preclinical study provide an ethical baseline to proceed with such a clinical study given the potential of the alkaline heat-treated surface to reduce periprosthetic joint infection and enhance implant osseointegration.


Assuntos
Anti-Infecciosos , Osseointegração , Animais , Anti-Infecciosos/farmacologia , Durapatita/farmacologia , Humanos , Próteses e Implantes , Ovinos , Propriedades de Superfície , Titânio/farmacologia
3.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830396

RESUMO

The link between the microbiome and cancer has led researchers to search for a potential probe for intracellular targeting of bacteria and cancer. Herein, we developed near infrared-emitting ternary AgInSe/ZnS quantum dots (QDs) for dual bacterial and cancer imaging. Briefly, water-soluble AgInSe/ZnS QDs were synthesized in a commercial kitchen pressure cooker. The as-synthesized QDs exhibited a spherical shape with a particle diameter of 4.5 ± 0.5 nm, and they were brightly fluorescent with a photoluminescence maximum at 705 nm. The QDs showed low toxicity against mouse mammary carcinoma (FM3A-Luc), mouse colon carcinoma (C26), malignant fibrous histiocytoma-like (KM-Luc/GFP) and prostate cancer cells, a greater number of accumulations in Staphylococcus aureus, and good cellular uptake in prostate cancer cells. This work is an excellent step towards using ternary QDs for diagnostic and guided therapy for prostate cancer.


Assuntos
Neoplasias da Próstata/diagnóstico , Prostatite/diagnóstico , Pontos Quânticos/análise , Staphylococcus aureus/isolamento & purificação , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , Feminino , Histiocitoma Fibroso Maligno/diagnóstico , Histiocitoma Fibroso Maligno/patologia , Humanos , Índio/química , Masculino , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/patologia , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Prostatite/diagnóstico por imagem , Prostatite/patologia , Pontos Quânticos/química , Selênio/química , Prata/química , Staphylococcus aureus/patogenicidade , Sulfetos/química , Água/química , Compostos de Zinco/química
4.
J Clin Periodontol ; 45(2): 204-212, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29121411

RESUMO

AIM: This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). MATERIALS AND METHODS: Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. RESULTS: Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p < .0001) and gingival inflammation (p < .0001) when compared with PD group. Oral gavage treatment group had significantly less tartrate-resistant acid phosphatase positive cells (p < .02) then PD group. LGG showed no antimicrobial activity against P. gingivalis and F. nucleatum. CONCLUSIONS: Lactobacillus rhamnosus GG effectively suppresses bone loss in a mouse model of induced PD irrespective of the mode of administration.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Lacticaseibacillus rhamnosus , Periodontite/prevenção & controle , Probióticos/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Fusobacterium nucleatum , Camundongos , Camundongos Endogâmicos BALB C , Periodontite/microbiologia , Porphyromonas gingivalis , Probióticos/administração & dosagem
5.
Clin Oral Investig ; 22(1): 487-493, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28589473

RESUMO

OBJECTIVES: The aim of this study was evaluate the effect of triclosan on citrullination and carbamylation, two important protein posttranslational modifications associated with inflammatory conditions such as periodontitis and rheumatoid arthritis. MATERIALS AND METHODS: A range of triclosan concentrations were incubated in the presence of appropriate substrates used for the generation of either citrullinated or carbamylated proteins. The effect of triclosan on protein citrullination and carbamylation in macrophages was also assessed. RESULTS: Citrullination and carbamylation were both significantly decreased by triclosan at concentrations six times lower than the 0.3% triclosan approved by the FDA to use in mouthwash and toothpaste. When macrophages were exposed to triclosan, carbamylation was significantly deceased (p = 0.01), and while citrullination also decreased, this reduction was not statistically significant (p = 0.06). CONCLUSION: Triclosan reduced the generation of protein citrullination and carbamylation in vitro. CLINICAL RELEVANCE: Triclosan may be useful as an adjunct therapy in the management of inflammatory periodontal diseases and help to reduce posttranslational protein modification citrullination and carbamylation) in these tissues.


Assuntos
Anti-Infecciosos Locais/farmacologia , Macrófagos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Triclosan/farmacologia , Animais , Sobrevivência Celular , Citrulinação , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Porphyromonas gingivalis/enzimologia , Desiminases de Arginina em Proteínas , Coelhos
6.
BMC Neurol ; 14: 26, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24507546

RESUMO

BACKGROUND: Chronic inflammatory demyelinating polyradiculoneuropathy is a rare acquired immune-mediated progressive or relapsing disorder causing peripheral neuropathic disease of duration more than two months. Many individuals with chronic inflammatory demyelinating polyradiculoneuropathy fail to make a long-term recovery with current treatment regimes. The aim of this study was to prospectively review the literature to determine the effectiveness of therapies for chronic inflammatory demyelinating polyradiculoneuropathy. METHODS: Articles published from January 1990 to December 2012 were searched for studies to treat adults with chronic inflammatory demyelinating polyradiculoneuropathy. Peer-reviewed full-text articles published in English were included. RESULTS: Nine placebo-controlled double-blinded randomised trials were reviewed to treat subjects with chronic inflammatory demyelinating polyradiculoneuropathy exhibiting various degrees of effectiveness. The most effect treatments were; three randomised controlled trials using intravenous immunoglobulin, a study comparing pulsed dexamethasone and short term prednisolone and rituximab all showed promising results and were well tolerated. CONCLUSION: IVIg and corticosteroids remain first line treatments for CIDP. Therapies using monoclonal antibodies, such as Rituximab and Natalizumab offer the most promise for treatment of Chronic inflammatory demyelinating polyradiculoneuropathy however they also need further research, as does the use of stem cell therapy for treating Chronic inflammatory demyelinating polyradiculoneuropathy. Large randomised controlled trials and better patient selection are required to address responsiveness of CIDP patients to conventional treatments to elucidate mechanisms of action and future directions for therapeutic improvement.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/imunologia , Corticosteroides/imunologia , Corticosteroides/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/imunologia , Fatores Imunológicos/uso terapêutico , Imunossupressores/imunologia , Imunossupressores/uso terapêutico , Natalizumab , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
7.
Eur J Pharm Biopharm ; 202: 114374, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942176

RESUMO

Dental caries is one of the most prevalent non-communicable diseases worldwide, mediated by a multispecies biofilm that consists of high levels of acidogenic bacteria which ferment sugar to acid and cause teeth demineralization. Current treatment practice remains insufficient in addressing 1) rapid clearance of therapeutic agents from the oral environment 2) destroying bacteria that contribute to the healthy oral microbiome. In addition, increasing concerns over antibiotic resistance calls for innovative alternatives. In this study, we developed a pH responsive nano-carrier for delivery of polycationic silver nanoparticles. Branched-PEI capped silver nanoparticles (BPEI-AgNPs) were encapsulated in a tannic acid - Fe (III) complex-modified poly(D,L-lactic-co-glycolic acid) (PLGA) particle (Fe(III)-TA/PLGA@BPEI-AgNPs) to enhance binding to the plaque biofilm and demonstrate "intelligence" by releasing BPEI-AgNPs under acidic conditions that promote dental caries The constructed Fe(III)-TA/PLGA@BPEI-AgNPs (intelligent particles - IPs) exhibited significant binding to an axenic S. mutans biofilm grown on hydroxyapatite. Ag+ ions were released faster from the IPs at pH 4.0 (cariogenic pH) compared to pH 7.4. The antibiofilm results indicated that IPs can significantly reduce S. mutans biofilm volume and viability under acidic conditions. Cytotoxicity on differentiated Caco-2 cells and human gingival fibroblasts indicated that IPs were not cytotoxic. These findings demonstrate great potential of IPs in the treatment of dental caries.


Assuntos
Biofilmes , Cárie Dentária , Nanopartículas Metálicas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prata , Streptococcus mutans , Cárie Dentária/microbiologia , Cárie Dentária/tratamento farmacológico , Humanos , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Prata/química , Prata/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Concentração de Íons de Hidrogênio , Taninos/química , Taninos/farmacologia , Células CACO-2 , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Polietilenoimina/química
8.
Nanomaterials (Basel) ; 14(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39330633

RESUMO

Nanoparticle adhesion to polymer and similar substrates may be prone to low nano-Newton forces, disrupting the surface bonds and patterning, potentially reducing the functionality of complex surface patterns. Testing this, a functionalised surface reported for biological and medical applications, consisting of a thin plasma-derived oxazoline-based film with 68 nm diameter covalently bound colloidal gold nanoparticles attached within an aqueous solution, underwent nanomechanical analysis. Atomic Force Microscopy nanomechanical analysis was used to quantify the limits of various adaptations to these nanoparticle-featured substrates. Regular and laterally applied forces in the nano-Newton range were shown to de-adhere surface-bound gold nanoparticles. Applying a nanometre-thick overcoating anchored the nanoparticles to the surface and protected the underlying base substrate in a one-step process to improve the overall stability of the functionalised substrate against lower-range forces. The thickness of the oxazoline-based overcoating displayed protection from forces at different rates. Testing overcoating thickness ranging from 5 to 20 nm in 5 nm increments revealed a significant improvement in stability using a 20 nm-thick overcoating. This approach underscores the importance of optimising overcoating thickness to enhance nanoparticle-based surface modifications' durability and functional integrity.

9.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38334525

RESUMO

The atomic force microscope is a versatile tool for assessing the topography, friction, and roughness of a broad spectrum of surfaces, encompassing anti-bacterial nanostructure arrays. Measuring and comparing all these values with one instrument allows clear comparisons of many nanomechanical reactions and anomalies. Increasing nano-Newton-level forces through the cantilever tip allows for the testing and measuring of failure points, damage behavior, and functionality under unfavorable conditions. Subjecting a grade 5 titanium alloy to hydrothermally etched nanostructures while applying elevated cantilever tip forces resulted in the observation of irreversible damage through atomic force microscopy. Despite the damage, a rough and non-uniform morphology remained that may still allow it to perform in its intended application as an anti-bacterial implant surface. Utilizing an atomic force microscope enables the evaluation of these surfaces before their biomedical application.

10.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120379

RESUMO

Nanomechanical testing plays a crucial role in evaluating surfaces containing nanoparticles. Testing verifies surface performance concerning their intended function and detects any potential shortcomings in operational standards. Recognising that nanostructured surfaces are not always straightforward or uniform is essential. The chemical composition and morphology of these surfaces determine the end-point functionality. This can entail a layered surface using materials in contrast to each other that may require further modification after nanomechanical testing to pass performance and quality standards. Nanomechanical analysis of a structured surface consisting of a poly-methyl oxazoline film base functionalised with colloidal gold nanoparticles was demonstrated using an atomic force microscope (AFM). AFM nanomechanical testing investigated the overall substrate architecture's topographical, friction, adhesion, and wear parameters. Limitations towards its potential operation as a biomaterial were also addressed. This was demonstrated by using the AFM cantilever to apply various forces and break the bonds between the polymer film and gold nanoparticles. The AFM instrument offers an insight to the behaviour of low-modulus surface against a higher-modulus nanoparticle. This paper details the bonding and reaction limitations between these materials on the application of an externally applied force. The application of this interaction is highly scrutinised to highlight the potential limitations of a functionalised surface. These findings highlight the importance of conducting comprehensive nanomechanical testing to address concerns related to fabricating intricate biomaterial surfaces featuring nanostructures.

11.
ACS Appl Mater Interfaces ; 16(38): 50507-50523, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39263871

RESUMO

Immunoglobulin G (IgG) comprises a significant portion of the protein corona that forms on biomaterial surfaces and holds a pivotal role in modulating host immune responses. To shed light on the important relationship between biomaterial surface functionality, IgG adsorption, and innate immune responses, we prepared, using plasma deposition, four surface coatings with specific chemistries, wettability, and charge. We found that nitrogen-containing coatings such as these deposited from allylamine (AM) and 2-methyl-2-oxazoline (POX) cause the greatest IgG unfolding, while hydrophilic acrylic acid (AC) surfaces allowed for the retention of the protein structure. Structural changes in IgG significantly modulated macrophage attachment, migration, polarization, and the expression of pro- and anti-inflammatory cytokines. Unfolded IgG on the POX and AM surfaces enhanced macrophage attachment, migration, extracellular trap release, and pro-inflammatory factors production such as IL-6 and TNF-α. Retention of IgG structure on the AC surface downregulated inflammatory responses. The findings of this study demonstrate that the retention of protein structure is an essential factor that must be taken into consideration when designing biomaterial surfaces. Our study indicates that using hydrophilic surface coatings could be a promising strategy for designing immune-modulatory biomaterials for clinical applications.


Assuntos
Imunoglobulina G , Propriedades de Superfície , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Animais , Desdobramento de Proteína , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Células RAW 264.7 , Interações Hidrofóbicas e Hidrofílicas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Adsorção , Citocinas/metabolismo , Citocinas/imunologia
12.
Acta Biomater ; 175: 369-381, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141932

RESUMO

The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/fisiologia , Vancomicina/farmacologia , Cefazolina/metabolismo , Titânio/farmacologia , Infecções Estafilocócicas/prevenção & controle , Biofilmes , Testes de Sensibilidade Microbiana
13.
ACS Biomater Sci Eng ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213601

RESUMO

The adsorption of serum proteins on biomaterial surfaces is a critical determinant for the outcome of medical procedures and therapies, which involve inserting materials and devices into the body. In this study, we aimed to understand how surface topography at the nanoscale influences the composition of the protein corona that forms on the (bio)material surface when placed in contact with serum proteins. To achieve that, we developed nanoengineered model surfaces with finely tuned topography of 16, 40, and 70 nm, overcoated with methyl oxazoline to ensure uniform outermost chemistry across all surfaces. Our findings revealed that within the studied height range, surface nanotopography had no major influence on the overall quantity of adsorbed proteins. However, significant alterations were observed in the composition of the adsorbed protein corona. For instance, clusterin adsorption decreased on all the nanotopography-modified surfaces. Conversely, there was a notable increase in the adsorption of ApoB and IgG gamma on the 70 nm nanotopography. In comparison, the adsorption of albumin was greater on surfaces that had a topography scale of 40 nm. Analysis of the gene enrichment data revealed a reduction in protein adsorption across all immune response-related biological pathways on nanotopography-modified surfaces. This reduction became more pronounced for larger surface nanoprotrusions. Macrophages were used as representative immune cells to assess the influence of the protein corona composition on inflammatory outcomes. Gene expression analysis demonstrated reduced inflammatory responses on the nanotopographically modified surface, a trend further corroborated by cytokine analysis. These findings underscore the potential of precisely engineered nanotopography-coated surfaces for augmenting biomaterial functionality.

14.
Nanomaterials (Basel) ; 14(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39269091

RESUMO

Chronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this work is to enhance the critical variables of ciprofloxacin-loaded polycaprolactone-silk sericin (PCL/SS-PVA-CIP) nanofibre production via the process of electrospinning. To examine the antibacterial effectiveness of PCL/SS-PVA-CIP nanocomposites, the material was tested against P. aeruginosa and S. aureus. The combination of PCL/SS-PVA-CIP exhibited potent inhibitory properties, with the most effective concentrations of ciprofloxacin (CIP) being 3 µg/g and 7.0 µg/g for each bacterium, respectively. The biocompatibility was evaluated by conducting cell reduction and proliferation studies using the human epidermal keratinocyte (HaCaT) cells and human gingival fibroblasts (HGFs) in vitro cell lines. The PCL/SS-PVA-CIP showed good cell compatibility with HaCaT and HGF cells, with effective proliferation even at antibiotic doses of up to 7.0 µg/g. The drug release effectiveness of the nanocomposites was assessed at various concentrations of CIP, resulting in a maximum cumulative release of 76.5% and 74.4% after 72 h for CIP concentrations of 3 µg/g and 7 µg/g, respectively. In summary, our study emphasizes the possibility of combining silk sericin (SS) and polycaprolactone (PCL) loading with CIP nanocomposite for wound management.

15.
ACS Appl Bio Mater ; 6(9): 3472-3483, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37384836

RESUMO

Biomaterial-associated infection is an ever-increasing risk with devasting consequences for patients. Considerable research has been undertaken to address this issue by imparting antibacterial properties to the surface of biomedical implants. One approach that generated much interest over recent years was the generation of bioinspired bactericidal nanostructures. In the present report, we have investigated the interplay between macrophages and bacteria on antibacterial nanostructured surfaces to determine the outcome of the so-called "race for the surface". Our results showed that macrophages can indeed outcompete Staphylococcus aureus via multiple mechanisms. The early generation of reactive oxygen species by macrophages, downregulation of bacterial virulence gene expression, and the bactericidal nature of the nanostructured surface itself collectively acted to help the macrophage to win the race. This study highlights the potential of nanostructured surfaces to reduce infection rates and improve the long-term success of biomedical implants. This work can also serve as guidance to others to investigate in vitro host-bacteria interactions on other candidate antibacterial surfaces.


Assuntos
Biomimética , Nanoestruturas , Humanos , Biomimética/métodos , Propriedades de Superfície , Nanoestruturas/química , Materiais Biocompatíveis/química , Antibacterianos/química
16.
ACS Nano ; 17(15): 14406-14423, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506260

RESUMO

The proliferation of drug resistance in microbial pathogens poses a significant threat to human health. Hence, treatment measures are essential to surmount this growing problem. In this context, liquid metal nanoparticles are promising. Gallium, a post-transition metal notable for being a liquid at physiological temperature, has drawn attention for its distinctive properties, high antimicrobial efficacy, and low toxicity. Moreover, gallium nanoparticles demonstrate anti-inflammatory properties in immune cells. Gallium can alloy with other metals and be prepared in various composites to modify and tailor its characteristics and functionality. More importantly, the bactericidal mechanism of gallium liquid metal could sidestep the threat of emerging drug resistance mechanisms. Building on this rationale, gallium-based liquid metal nanoparticles can enable impactful and innovative strategic pathways in the battle against antimicrobial resistance. This review outlines the characteristics of gallium-based liquid metals at the nanoscale and their corresponding antimicrobial mechanisms to provide a comprehensive yet succinct overview of their current antimicrobial applications. In addition, challenges and opportunities that require further research efforts have been identified and discussed.


Assuntos
Anti-Infecciosos , Gálio , Nanopartículas Metálicas , Humanos , Gálio/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
17.
NPJ Biofilms Microbiomes ; 9(1): 90, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030708

RESUMO

Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of S. aureus adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders S. aureus more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures.


Assuntos
Infecções Estafilocócicas , Vancomicina , Humanos , Vancomicina/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Próteses e Implantes
18.
ACS Appl Mater Interfaces ; 15(1): 220-235, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416784

RESUMO

The present study interrogates the interaction of highly efficient antibacterial surfaces containing sharp nanostructures with blood proteins and the subsequent immunological consequences, processes that are of key importance for the fate of every implantable biomaterial. Studies with human serum and plasma pointed to significant differences in the composition of the protein corona that formed on control and nanostructured surfaces. Quantitative analysis using liquid chromatography-mass spectrometry demonstrated that the nanostructured surface attracted more vitronectin and less complement proteins compared to the untreated control. In turn, the protein corona composition modulated the adhesion and cytokine expression by immune cells. Monocytes produced lower amounts of pro-inflammatory cytokines and expressed more anti-inflammatory factors on the nanostructured surface. Studies using an in vivo subcutaneous mouse model showed reduced fibrous capsule thickness which could be a consequence of the attenuated inflammatory response. The results from this work suggest that antibacterial surface modification with sharp spike-like nanostructures may not only lead to the reduction of inflammation but also more favorable foreign body response and enhanced healing, processes that are beneficial for most medical devices implanted in patients.


Assuntos
Nanoestruturas , Coroa de Proteína , Humanos , Camundongos , Animais , Adsorção , Nanoestruturas/química , Proteínas Sanguíneas , Citocinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Propriedades de Superfície , Adesão Celular/fisiologia
19.
Colloids Surf B Biointerfaces ; 217: 112590, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660744

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for the treatment of pain, inflammation and fever. However, most NSAIDs are poorly water soluble, making it difficult to be administered thus high doses are required to reach the intended therapeutic effect, resulting in associated side effects. In this study, ROS-responsive micellar systems based on a block copolymer consisting of methylpropyl thioether (MTPA) and N'N-dimethylacrylamide was developed and loaded with ibuprofen (IBU). Using lipopolysaccharide activated RAW 264.7 macrophage like cells, we demonstrated that IBU was released from the copolymer, specifically in the presence of ROS. Interestingly, IBU encapsulated in ROS-responsive nanoparticles exhibited greater anti-inflammatory potency compared to its free form. The work highlights the potential of the ROS-responsive micellar system developed in this work to be used as carrier of NSAIDs for the treatment of relevant inflammatory conditions.


Assuntos
Ibuprofeno , Micelas , Anti-Inflamatórios não Esteroides/farmacologia , Humanos , Ibuprofeno/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Polímeros , Espécies Reativas de Oxigênio
20.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616065

RESUMO

Amphotericin B is an antifungal drug used for the treatment of invasive fungal infections. However, its clinical use is limited due to its serious side effects, such as renal and cardiovascular toxicity. Furthermore, amphotericin B is administered in high doses due to its poor water solubility. Hence, it is necessary to develop an on-demand release strategy for the delivery of amphotericin B to reduce cytotoxicity. The present report describes a novel encapsulation of amphotericin B into lipase-sensitive polycaprolactone to form a nanocomposite. Nanocomposites were produced by the oil-in-water method and their physicochemical properties such as size, hydrodynamic diameter, drug loading, and zeta potential were determined. The in vitro release of amphotericin B was characterized in the presence and absence of lipase. The antifungal activity of the nanocomposites was verified against lipase-secreting Candida albicans, and cytotoxicity was tested against primary human dermal fibroblasts. In the absence of lipase, the release of amphotericin B from the nanocomposites was minimal. However, in the presence of lipase, an enzyme that is abundant at infection sites, a fungicidal concentration of amphotericin B was released from the nanocomposites. The antifungal activity of the nanocomposites showed an enhanced effect against the lipase-secreting fungus, Candida albicans, in comparison to the free drug at the same concentration. Furthermore, nanoencapsulation significantly reduced amphotericin B-related cytotoxicity compared to the free drug. The synthesized nanocomposites can serve as a potent carrier for the responsive delivery of amphotericin B in antifungal applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA