Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cytometry B Clin Cytom ; 106(4): 228-238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407537

RESUMO

Flow cytometry is a key clinical tool in the diagnosis of many hematologic malignancies and traditionally requires close inspection of digital data by hematopathologists with expert domain knowledge. Advances in artificial intelligence (AI) are transferable to flow cytometry and have the potential to improve efficiency and prioritization of cases, reduce errors, and highlight fundamental, previously unrecognized associations with underlying biological processes. As a multidisciplinary group of stakeholders, we review a range of critical considerations for appropriately applying AI to clinical flow cytometry, including use case identification, low and high risk use cases, validation, revalidation, computational considerations, and the present regulatory frameworks surrounding AI in clinical medicine. In particular, we provide practical guidance for the development, implementation, and suggestions for potential regulation of AI-based methods in the clinical flow cytometry laboratory. We expect these recommendations to be a helpful initial framework of reference, which will also require additional updates as the field matures.


Assuntos
Inteligência Artificial , Citometria de Fluxo , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Humanos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/patologia
2.
Cytometry B Clin Cytom ; 106(4): 239-251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38415807

RESUMO

Multiparameter flow cytometry is widely used for acute myeloid leukemia minimal residual disease testing (AML MRD) but is time consuming and demands substantial expertise. Machine learning offers potential advancements in accuracy and efficiency, but has yet to be widely adopted for this application. To explore this, we trained single cell XGBoost classifiers from 98 diagnostic AML cell populations and 30 MRD negative samples. Performance was assessed by cross-validation. Predictions were integrated with UMAP as a heatmap parameter for an augmented/interactive AML MRD analysis framework, which was benchmarked against traditional MRD analysis for 25 test cases. The results showed that XGBoost achieved a median AUC of 0.97, effectively distinguishing diverse AML cell populations from normal cells. When integrated with UMAP, the classifiers highlighted MRD populations against the background of normal events. Our pipeline, MAGIC-DR, incorporated classifier predictions and UMAP into flow cytometry standard (FCS) files. This enabled a human-in-the-loop machine learning guided MRD workflow. Validation against conventional analysis for 25 MRD samples showed 100% concordance in myeloid blast detection, with MAGIC-DR also identifying several immature monocytic populations not readily found by conventional analysis. In conclusion, Integrating a supervised classifier with unsupervised dimension reduction offers a robust method for AML MRD analysis that can be seamlessly integrated into conventional workflows. Our approach can support and augment human analysis by highlighting abnormal populations that can be gated on for quantification and further assessment. This has the potential to speed up MRD analysis, and potentially improve detection sensitivity for certain AML immunophenotypes.


Assuntos
Citometria de Fluxo , Leucemia Mieloide Aguda , Aprendizado de Máquina , Neoplasia Residual , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Citometria de Fluxo/métodos , Imunofenotipagem/métodos
3.
J Immunol Res ; 2024: 1117796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081632

RESUMO

The first few days of life are characterized by rapid external and internal changes that require substantial immune system adaptations. Despite growing evidence of the impact of this period on lifelong immune health, this period remains largely uncharted. To identify factors that may impact the trajectory of immune development, we conducted stringently standardized, high-throughput phenotyping of peripheral white blood cell (WBC) populations from 796 newborns across two distinct cohorts (The Gambia, West Africa; Papua New Guinea, Melanesia) in the framework of a Human Immunology Project Consortium (HIPC) study. Samples were collected twice from each newborn during the first week of life, first at Day of Life 0 (at birth) and then subsequently at Day of Life 1, 3, or 7 depending on the randomization group the newborn belongs to. The subsequent analysis was conducted at an unprecedented level of detail using flow cytometry and an unbiased automated gating algorithm. The results showed that WBC composition in peripheral blood changes along patterns highly conserved across populations and environments. Changes across days of life were most pronounced in the innate myeloid compartment. Breastfeeding, and at a smaller scale neonatal vaccination, were associated with changes in peripheral blood neutrophil and monocyte cell counts. Our results suggest a common trajectory of immune development in newborns and possible association with timing of breastfeeding initiation, which may contribute to immune-mediated protection from infection in early life. These data begin to outline a specific window of opportunity for interventions that could deliberately direct WBC composition, and with that, immune trajectory and thus ontogeny in early life. This trial is registered with NCT03246230.


Assuntos
Aleitamento Materno , Neutrófilos , Feminino , Humanos , Recém-Nascido , Masculino , Fatores Etários , Citometria de Fluxo , Gâmbia , Contagem de Leucócitos , Monócitos/imunologia , Neutrófilos/imunologia , Papua Nova Guiné , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA