RESUMO
INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) may be familial or sporadic, and twin studies have revealed that even sporadic forms have a significant genetic component. Variants in 55 nuclear genes have been associated with ALS and although mitochondrial dysfunction is observed in ALS, variants in mitochondrial genomes (mitogenomes) have not yet been tested for association with ALS. The aim of this study was to determine whether mitogenome variants are associated with ALS. METHODS: We conducted a genome-wide association study (GWAS) in mitogenomes of 1965 ALS patients and 2547 controls. RESULTS: We identified 51 mitogenome variants with p values <10-7, of which 13 had odds ratios (ORs) >1, in genes RNR1, ND1, CO1, CO3, ND5, ND6, and CYB, while 38 variants had OR <1 in genes RNR1, RNA2, ND1, ND2, CO2, ATP8, ATP6, CO3, ND3, ND4, ND5, ND6, and CYB. The frequencies of haplogroups H, U, and L, the most frequent in our ALS data set, were the same in different onset sites (bulbar, limb, spinal, and axial). Also, intra-haplogroup GWAS revealed unique ALS-associated variants in haplogroups L and U. DISCUSSION: Our study shows that mitogenome single nucleotide variants (SNVs) are associated with ALS and suggests that these SNVs could be included in routine genetic testing for ALS and that mitochondrial replacement therapy has the potential to serve as a basis for ALS treatment.
Assuntos
Esclerose Lateral Amiotrófica , Genoma Mitocondrial , Estudo de Associação Genômica Ampla , Humanos , Esclerose Lateral Amiotrófica/genética , Genoma Mitocondrial/genética , Masculino , Feminino , Pessoa de Meia-Idade , Haplótipos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética , Idoso , Variação Genética/genéticaRESUMO
The genetic contributions of Neanderthals to the modern human genome have been evidenced by the comparison of present-day human genomes with paleogenomes. Neanderthal signatures in extant human genomes are attributed to intercrosses between Neanderthals and archaic anatomically modern humans (AMHs). Although Neanderthal signatures are well documented in the nuclear genome, it has been proposed that there is no contribution of Neanderthal mitochondrial DNA to contemporary human genomes. Here we show that modern human mitochondrial genomes contain 66 potential Neanderthal signatures, or Neanderthal single nucleotide variants (N-SNVs), of which 36 lie in coding regions and 7 result in nonsynonymous changes. Seven N-SNVs are associated with traits such as cycling vomiting syndrome, Alzheimer's disease and Parkinson's disease, and two N-SNVs are associated with intelligence quotient. Based on recombination tests, principal component analysis (PCA) and the complete absence of these N-SNVs in 41 archaic AMH mitogenomes, we conclude that convergent evolution, and not recombination, explains the presence of N-SNVs in present-day human mitogenomes.
Assuntos
Doença de Alzheimer , Genoma Mitocondrial , Homem de Neandertal , Humanos , Animais , Homem de Neandertal/genética , Mutação , NucleotídeosRESUMO
BACKGROUND: Narcolepsy type 1 (NT1) is a rare and chronic neurological disease characterized by sudden sleep attacks, overwhelming daytime drowsiness, and cataplexy. When associated with a sudden loss of muscle tone (cataplexy) narcolepsy is classified as type 1, while the absence of cataplexy indicates type 2. Genetic, degenerative, and immunological hypotheses to explain the pathophysiology of NT1 are still a matter of debate. To contribute to the understanding of NT1 genetic basis, here we describe, for the first time, a whole genome analysis of a monozygotic twin pair discordant for NT1. CASE PRESENTATION: We present the case of a pair of 17-year-old male, monozygotic twins discordant for NT1. The affected twin had Epworth Sleepiness Scale (ESS) of 20 (can range from 0 to 24), cataplexy, hypnagogic hallucinations, polysomnography without abnormalities, multiple sleep latency tests (MSLT) positive for narcolepsy, a mean sleep latency of 3 min, sleep-onset REM periods SOREMPs of 5, presence of allele HLA-DQB1*06:02, and Hypocretin-1 level of zero pg/mL (normal values are > 200 pg/mL). The other twin had no narcolepsy symptoms (ESS of 4), normal polysomnography, MSLT without abnormalities, presence of allele HLA-DQB1*06:02, and Hypocretin-1 level of 396,74 pg/mL. To describe the genetic background for the NT1 discordant manifestations in this case, we present the whole-genome analysis of this monozygotic twin pair. The whole-genome comparison revealed that both twins have identical NT1 pathogenic mutations in known genes, such as HLA-DQB1*06:02:01, HLA-DRB1*11:01:02/*15:03:01. The affected twin has the expected clinical manifestation while the unaffected twin has an unexpected phenotype. The unaffected twin has significantly more frameshift mutations as compared to the affected twin (108 versus 75) and mutations that affect stop codons (61 versus 5 in stop gain, 26 versus 2 in start lost). CONCLUSIONS: The differences observed in frameshift and stop codon mutations in the unaffected twin are consistent with loss-of-function effects and protective alleles, that are almost always associated with loss-of-function rare alleles. Also, overrepresentation analysis of genes containing variants with potential clinical relevance in the unaffected twin shows that most mutations are in genes related to immune regulation function, Golgi apparatus, MHC, and olfactory receptor. These observations support the hypothesis that NT1 has an immunological basis although protective mutations in non-HLA alleles might interfere with the expression of the NT1 phenotype and consequently, with the clinical manifestation of the disease.
Assuntos
Cataplexia , Narcolepsia , Masculino , Humanos , Orexinas , Brasil , Narcolepsia/diagnóstico , Narcolepsia/genética , PolissonografiaRESUMO
Histone acetylation has a regulatory role in gene expression and is necessary for proper tissue development. To investigate the specific roles of histone deacetylases (HDACs) in rod differentiation in neonatal mouse retinas, we used a pharmacological approach that showed that inhibition of class I but not class IIa HDACs caused the same phenotypic changes seen with broad spectrum HDAC inhibitors, most notably a block in the differentiation of rod photoreceptors. Inhibition of HDAC1 resulted in increase of acetylation of lysine 9 of histone 3 (H3K9) and lysine 12 of histone 4 (H4K12) but not lysine 27 of histone 3 (H3K27) and led to maintained expression of progenitor-specific genes such as Vsx2 and Hes1 with concomitant block of expression of rod-specific genes. ChiP experiments confirmed these changes in the promoters of a group of progenitor genes. Based on our results, we suggest that HDAC1-specific inhibition prevents progenitor cells of the retina from exiting the cell cycle and differentiating. HDAC1 may be an essential epigenetic regulator of the transition from progenitor cells to terminally differentiated photoreceptors.
Assuntos
Diferenciação Celular , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/química , Acetilação , Animais , Apoptose , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histonas/química , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Rodopsina/metabolismoRESUMO
BACKGROUND: Short and long range correlations in biological sequences are central in genomic studies of covariation. These correlations can be studied using mutual information because it measures the amount of information one random variable contains about the other. Here we present MIA (Mutual Information Analyzer) a user friendly graphic interface pipeline that calculates spectra of vertical entropy (VH), vertical mutual information (VMI) and horizontal mutual information (HMI), since currently there is no user friendly integrated platform that in a single package perform all these calculations. MIA also calculates Jensen-Shannon Divergence (JSD) between pair of different species spectra, herein called informational distances. Thus, the resulting distance matrices can be presented by distance histograms and informational dendrograms, giving support to discrimination of closely related species. RESULTS: In order to test MIA we analyzed sequences from Drosophila Adh locus, because the taxonomy and evolutionary patterns of different Drosophila species are well established and the gene Adh is extensively studied. The search retrieved 959 sequences of 291 species. From the total, 450 sequences of 17 species were selected. With this dataset MIA performed all tasks in less than three hours: gathering, storing and aligning fasta files; calculating VH, VMI and HMI spectra; and calculating JSD between pair of different species spectra. For each task MIA saved tables and graphics in the local disk, easily accessible for future analysis. CONCLUSIONS: Our tests revealed that the "informational model free" spectra may represent species signatures. Since JSD applied to Horizontal Mutual Information spectra resulted in statistically significant distances between species, we could calculate respective hierarchical clusters, herein called Informational Dendrograms (ID). When compared to phylogenetic trees all Informational Dendrograms presented similar taxonomy and species clusterization.
Assuntos
Algoritmos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biologia Computacional/métodos , Gráficos por Computador , Proteínas de Drosophila/genética , Drosophila/genética , Animais , Entropia , Evolução Molecular , Genoma , Genômica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Análise de Sequência de DNA/métodosRESUMO
DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.
Assuntos
DNA Antigo , Genoma Viral , Homem de Neandertal , Animais , Homem de Neandertal/genética , Homem de Neandertal/virologia , DNA Antigo/análise , Evolução Molecular , DNA Viral/genética , Análise de Sequência de DNA/métodos , Humanos , Filogenia , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Fósseis/virologiaRESUMO
Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian-Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24-72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta.
Assuntos
Retrovirus Endógenos , Interleucinas , Fatores de Transcrição , Trofoblastos , Infecção por Zika virus , Zika virus , Humanos , Trofoblastos/virologia , Trofoblastos/metabolismo , Feminino , Infecção por Zika virus/virologia , Infecção por Zika virus/genética , Retrovirus Endógenos/genética , Gravidez , Interleucinas/genética , Interleucinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Placenta/virologia , Placenta/metabolismo , Linhagem CelularRESUMO
BACKGROUND: Differences in the susceptibility of Candida species to antifungal drugs make identification to the species level important for clinical management of candidemia. Molecular tests are not yet standardized or available in most clinical laboratories, although such tests can reduce the time required for species identification, as compared to the conventional culture-based methods. To decrease laboratory costs and improve diagnostic accuracy, different molecular methods have been proposed, including DNA extraction protocols to produce pure DNA free of PCR inhibitors. The objective of this study was to validate a new format of molecular method, based on the internal transcribed spacer (ITS) of the rDNA gene amplification followed by sequencing, to identify common and cryptic Candida species causing candidemia by analyzing DNA in blood culture bottles positive for yeasts. METHODS: For DNA extraction, an "in-house" protocol based on organic solvent extraction was tested. Additional steps of liquid nitrogen incubation followed by mechanical disruption ensured complete cell lysis, and highly pure DNA. One hundred sixty blood culture bottles positive for yeasts were processed. PCR assays amplified the ITS region. The DNA fragments of 152 samples were sequenced and these sequences were identified using the GenBank database (NCBI). Molecular yeast identification was compared to results attained by conventional method. RESULTS: The organic solvent extraction protocol showed high reproducibility in regards to DNA quantity, as well as high PCR sensitivity (10 pg of C. albicans DNA and 95% amplification on PCR). The identification of species at the molecular level showed 97% concordance with the conventional culturing method. The molecular method tested in the present study also allowed identification of species not commonly implicated in human infections. CONCLUSIONS: This study demonstrated that our molecular method presents significant advantages over the conventional yeast culture identification method by providing accurate results within 24 hours, in contrast to at least 72 hours required by the automated conventional culture method. Additionally, our molecular method allowed the identification of mixed infections, as well as infections due to emergent fungal pathogens. This economical DNA extraction method developed in our laboratory provided high-quality DNA and 60% cost savings compared to commercial methods.
Assuntos
Sangue/microbiologia , Candida/isolamento & purificação , Candidíase/microbiologia , Reação em Cadeia da Polimerase/métodos , Coleta de Amostras Sanguíneas , Candida/genética , Candida/crescimento & desenvolvimento , Humanos , Reação em Cadeia da Polimerase/economiaRESUMO
Candida parapsilosis is the Candida species isolated the second most frequently from blood cultures in South America and some European countries, such as Spain. Since 2005, this species has been considered a complex of 3 closely related species: C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis. Here, we describe a real-time TaqMan-MGB PCR assay, using mitochondrial DNA (mtDNA) as the target, which readily distinguishes these 3 species. We first used comparative genomics to locate syntenic regions between these 3 mitochondrial genomes and then selected NADH5 as the target for the real-time PCR assay. Probes were designed to include a combination of different single-nucleotide polymorphisms that are able to differentiate each species within the C. parapsilosis complex. This new methodology was first tested using mtDNA and then genomic DNA from 4 reference and 5 clinical strains. For assay validation, a total of 96 clinical isolates and 4 American Type Culture Collection (ATCC) isolates previously identified by internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequencing were tested. Real-time PCR using genomic DNA was able to differentiate the 3 species with 100% accuracy. No amplification was observed when DNA from other species was used as the template. We observed 100% congruence with ITS rDNA sequencing identification, including for 30 strains used in blind testing. This novel method allows a quick and accurate intracomplex identification of C. parapsilosis and saves time compared with sequencing, which so far has been considered the "gold standard" for Candida yeast identification. In addition, this assay provides a useful tool for epidemiological and clinical studies of these emergent species.
Assuntos
Candida/classificação , Candida/genética , DNA Mitocondrial/genética , Técnicas Microbiológicas/métodos , Micologia/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA/genética , Humanos , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , América do Sul , Espanha , Fatores de TempoRESUMO
The epitranscriptomics of the SARS-CoV-2 infected cell reveals its response to viral replication. Among various types of RNA nucleotide modifications, the m6A is the most common and is involved in several crucial processes of RNA intracellular location, maturation, half-life and translatability. This epitranscriptome contains a mixture of viral RNAs and cellular transcripts. In a previous study we presented the analysis of the SARS-CoV-2 RNA m6A methylation based on direct RNA sequencing and characterized DRACH motif mutations in different viral lineages. Here we present the analysis of the m6A transcript methylation of Vero cells (derived from African Green Monkeys) and Calu-3 cells (human) upon infection by SARS-CoV-2 using direct RNA sequencing data. Analysis of these data by nonparametric statistics and two computational methods (m6anet and EpiNano) show that m6A levels are higher in RNAs of infected cells. Functional enrichment analysis reveals increased m6A methylation of transcripts involved in translation, peptide and amine metabolism. This analysis allowed the identification of differentially methylated transcripts and m6A unique sites in the infected cell transcripts. Results here presented indicate that the cell response to viral infection not only changes the levels of mRNAs, as previously shown, but also its epitranscriptional pattern. Also, transcriptome-wide analysis shows strong nucleotide biases in DRACH motifs of cellular transcripts, both in Vero and Calu-3 cells, which use the signature GGACU whereas in viral RNAs the signature is GAACU. We hypothesize that the differences of DRACH motif biases, might force the convergent evolution of the viral genome resulting in better adaptation to target sequence preferences of writer, reader and eraser enzymes. To our knowledge, this is the first report on m6A epitranscriptome of the SARS-CoV-2 infected Vero cells by direct RNA sequencing, which is the sensu stricto RNA-seq.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Viés , Chlorocebus aethiops , Humanos , Nucleotídeos , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA , Células VeroRESUMO
The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper function. Among internal modified bases, the N6-methyladenosine, or m6A, is the most frequent, and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs. This process reduces the true complexity of these viral genomes because the incorporation of dNTPs hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF10 and the 3'-untranslated region. We identified fifteen m6A methylated positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly conserved among variants, we show that variants Beta and Eta have a fourth position C > U change in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases.
Assuntos
Adenosina/análogos & derivados , COVID-19/virologia , Evasão da Resposta Imune/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , Regiões 3' não Traduzidas , Adenosina/metabolismo , Animais , Chlorocebus aethiops , Genoma Viral , Humanos , Metilação , Sequenciamento por Nanoporos/métodos , Fases de Leitura Aberta , Análise de Sequência de RNA/métodos , Células VeroRESUMO
Surface adhesion proteins are essential for Trypanosoma cruzi invasion of mammalian cells. Here we show that Dispersed Gene Family-1 (DGF-1) members, previously identified as nuclear repeated sequences present in several chromosomes and comprising the third largest T. cruzi specific gene family, have conserved adhesin motifs including four segments with significant similarity to human beta 7 integrin. Flow cytometry and biotinylation assays with anti-DGF-1 antibodies indicated that, as expected, DGF-1 members are expressed on the trypomastigote surface. The DGF-1 genealogy, inferred using T. cruzi Genome Project data and network phylogeny algorithms, suggests that this gene family is separated in at least three groups with differential distribution of functional domains. To identify which members of this gene family are expressed we used a combined approach of RT-PCR and codon usage profiles, showing that expressed members have a very biased codon usage favoring GC, whereas non-expressed members have a homogeneous distribution. Shannon information entropy was used to measure sequence variability and revealed four major high entropy segments in the extracellular domain of DGF-1 overlapping with important putative functional modules of the predicted proteins. Testing for natural selection, however, indicated that these high entropy segments were not under positive selection, which contradicts the notion that positive selection is the cause of high variability in specific domains of a protein relative to other less variable regions in the same molecule. We conjectured that members of the DGF-1 family might be associated with the ability of T. cruzi to bind extracellular matrix proteins, such as fibronectin and laminin, and speculated on mechanisms that would be generating the localized diversity in these molecules in the absence of selection.
Assuntos
Genes de Protozoários/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Animais , Códon/genética , Ordem dos Genes , Variação Genética , Humanos , Cadeias beta de Integrinas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Protozoários/química , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trypanosoma cruzi/classificaçãoRESUMO
Gene HWP1 encodes a major Candida albicans hyphae cell wall protein which is a substrate of mammalian transglutaminases, promoting the cross-link of the fungus to epithelial cells. Here, we describe a novel HWP1 allele, isolated from C. albicans blood isolates. Analysis of the translated sequence shows that three important regions are absent in the novel allele, HWP1-2, relative to the previously described allele, HWP1-1. Regions 1 and 2 consist of 10 amino acid repeats important for functional conformation of peptide chains and attachment of C. albicans cells to the mammalian epithelia. Region 3 consists of 34 amino acid residues rich in threonine and serine, with O-glycosylation sites that promote the cross-linking with other proteins on C. albicans surface. The HWP1-2 homozygous strain L757 and the heterozygous strain L296 (HWP1-1/HWP1-2) have significantly lower levels of HWP1 expression during hyphal growth and biofilm formation compared to strain SC5314 (HWP1-1/HWP1-1). However, strain L296 properly forms hyphae and biofilms in vitro while strain L757 has reduced hyphal growth (40.4%) and biofilm formation (90.8%). Our results indicate that the HWP1 locus has biofilm specific allelic differential expression and suggest that the HWP1-2 encoded protein is less efficient to maintain cell-to-cell and cell-to-surface adhesion during biofilm formation. This is the first report of a natural variant of HWP1.
Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/fisiologia , Proteínas Fúngicas/genética , Glicoproteínas de Membrana/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Candida albicans/citologia , Adesão Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Dados de Sequência MolecularRESUMO
Polymicrobial infections with mixed-species biofilms are important health problems because of increased antimicrobial resistance and worse patient outcomes than with monomicrobial infections. Here, we present the whole-genome sequence of Staphylococcus epidermidis strain GTH12, which was cocultured with the yeast Candida albicans SC5314 (generating C. albicans strain SC5314 GTH12), thus providing genomic information on polymicrobial infections.
RESUMO
Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in other words, if it follows a Poisson law. The ECD is computed from the discretized branch lengths and the parameter λ of the expected Poisson distribution is calculated as the average branch length over the ensemble of trees. To compensate for the auto-correlation in the ensemble of trees and pseudo-replication we take advantage of thinning and effective sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is observed that tree topologies with very long or very short branches lead to Poisson mixtures and in this case we propose the use of the two-sample KS test with samples from two continuous branch length distributions, one obtained from an ensemble of clock-constrained trees and the other from an ensemble of unconstrained trees. Moreover, in this second form the test can also be applied to test for relaxed clock models. The use of a statistically equivalent ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree, yields considerable reduction of the effects of small sample size and provides a gain of power.
Assuntos
Evolução Molecular , Modelos Genéticos , Filogenia , Animais , Ascomicetos/classificação , Ascomicetos/genética , Teorema de Bayes , Simulação por Computador , Ciclo-Oxigenase 1/genética , DNA/genética , Bases de Dados Genéticas , Produtos do Gene env/genética , Humanos , Lentivirus/classificação , Lentivirus/genética , Distribuição de Poisson , Primatas/classificação , Primatas/genética , Proteínas/genética , Estatísticas não Paramétricas , Fatores de TempoRESUMO
The commensal yeast Candida albicans is an opportunistic pathogen. In order to successfully colonize or infect the human body, the fungus must adapt to the host's environmental conditions, such as low oxygen tension (hypoxia), temperature (37°C), and the different carbon sources available. Previous studies demonstrated the adaptive importance of C. albicans genetic variability for its pathogenicity, although the contributions of epigenetic and the influence of environmental factors are not fully understood. Mitochondria play important roles in fungal energetic metabolism, regulation of nuclear epigenetic mechanisms and pathogenicity. However, the specific impact of inter-strain mitochondrial genome variability and mitochondrial epigenetics in pathogenicity is unclear. Here, we draw attention to this relevant organelle and its potential role in C. albicans pathogenicity and provide preliminary evidence, for the first time, for methylation of the yeast mitochondrial genome. Our results indicate that environmental conditions, such as continuous exposure for 12 weeks to hypoxia and 37°C, decrease the mitochondrial genome methylation in strains SC5314 and L757. However, the methylation decrease is quantitatively different in specific genome positions when strains SC5314 and L757 are compared. We hypothesize that this phenomenon can be promising for future research to understand how physical factors of the host affect the C. albicans mitochondrial genome and its possible impact on adaptation and pathogenicity.
RESUMO
The genetic variability of the opportunistic pathogen Candida albicans is an important adaptive mechanism. Here, we present the whole-genome sequences of the C. albicans SC5314 strain under two different growth conditions, providing useful information for comparative genomic studies and further intraspecific analysis.
RESUMO
Amyotrophic lateral sclerosis (ALS) is the third most prevalent neurodegenerative disease affecting upper and lower motor neurons. An important pathway that may lead to motor neuron degeneration is neuroinflammation. Cerebrospinal Fluids of ALS patients have increased levels of the inflammatory cytokine IL-18. Because IL-18 is produced by dendritic cells stimulated by the platelet-activating factor (PAF), a major neuroinflammatory mediator, it is expected that PAF is involved in ALS. Here we show pilot experimental data on amplification of PAF receptor (PAFR) mRNA by RT-PCR. PAFR is overexpressed, as compared to age matched controls, in the spinal cords of transgenic ALS SOD1-G93A mice, suggesting PAF mediation. Although anti-inflammatory drugs have been tested for ALS before, no clinical trial has been conducted using PAFR specific inhibitors. Therefore, we hypothesize that administration of PAFR inhibitors, such as Ginkgolide B, PCA 4248 and WEB 2086, have potential to function as a novel therapy for ALS, particularly in SOD1 familial ALS forms. Because currently there are only two approved drugs with modest effectiveness for ALS therapy, a search for novel drugs and targets is essential.
RESUMO
Bacterial species are associated with Candida albicans in at least 25% of patients with bloodstream infection (Candidemia). These polymicrobial infections are usually caused by coagulase-negative staphylococci, most commonly Staphylococcus epidermidis and are associated with significantly worse clinical outcomes as compared to monomicrobial infections. Here we show that bacteria are present in C. albicans cultures started from isolated single colonies. These bacteria can only be detected by the use of specific media, and prolonged incubation periods of at least 8â¯days. The detection of these bacteria is sensitive to the polymerase enzyme used for 16S rDNA gene amplification and is often missed in clinical laboratory analysis because of short incubation periods, media and temperatures, used in mycology clinical routine, that are unfavorable for bacterial growth. We identified bacteria in cultures of different C. albicans isolates in long-term, continuous growth by molecular analysis and microscopy. Also, we confirmed the presence of these bacteria by identification of S. epidermidis genome segments in sequencing reads of the C. albicans reference strain SC5314 genome sequencing project raw data deposited in GenBank. Our results show that the presence of associated bacteria correlates with antifungal resistance alterations observed in growth under hypoxia. Our findings reveal the intense interaction between C. albicans yeasts and bacteria and have direct implications in yeast clinical procedures, especially concerning patient treatment.
Assuntos
Bactérias/isolamento & purificação , Candida albicans/isolamento & purificação , Antifúngicos/farmacologia , Bactérias/crescimento & desenvolvimento , Candida albicans/classificação , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Coinfecção/microbiologia , Farmacorresistência Fúngica , Genoma Fúngico , Humanos , Microscopia Confocal , RNA Ribossômico 16S/genéticaRESUMO
Classical lissencephaly is a neuroblast migration disorder that occurs either as isolated lissencephaly sequence or in association with malformation syndromes, such as the Miller-Dieker syndrome. In this work, alterations of the LIS1 gene in patients diagnosed as having isolated lissencephaly sequence were investigated. Ten patients were evaluated for the following aspects: classical cytogenetics by karyotyping using solid staining and G-banding; molecular cytogenetics using fluorescent in situ hybridization with a specific probe for the critical region of isolated lissencephaly sequence; and molecular analysis using deoxyribonucleic acid sequencing. Classical cytogenetic analysis indicated apparently normal karyotypes in all patients, but fluorescent in situ hybridization revealed a 17p13.3 microdeletion in one. In another patient, deoxyribonucleic acid sequencing disclosed a 1 base pair insertion in exon 4 within a sequence of eight consecutive adenine residues (162-163insA), a mutation that predicts a truncated protein. Two different polymorphisms were also detected: a T>C substitution in intron 6 (c.568 + 27bp T>C) and a C>T substitution in the nontranslated region of exon 11 (1250 C>T). These results indicate that cytogenetic analysis and molecular investigation of the LIS1 gene are not always sufficient to determine the disease etiology. These findings are consistent with previous studies and suggest the involvement of other genes in cortical malformation.