Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 241-250, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113511

RESUMO

We report a chemically motivated, single-step method to enhance metal deposition onto silicon laser-induced periodic surface structures (LIPSSs) using reactive laser ablation in liquid (RLAL). Galvanic replacement (GR) reactions were used in conjunction with RLAL (GR-RLAL) to promote the deposition of Au and Cu nanostructures onto a Si LIPSS. To increase the deposition of Au, sacrificial metals Cu, Fe, and Zn were used; Fe and Zn also enhanced the deposition of Cu. We show that the deposited metal content, surface morphology, and metal crystallite size can be tuned based on the difference in electrochemical potentials of the deposited and sacrificial metal. Compared to the Au and Cu reference samples, GR more than doubled the metal content on the LIPSS and reduced metal crystallite sizes by up to 20%. The ability to tune the metal content and crystalline domain size simultaneously makes GR-RLAL a potentially useful approach in the manufacturing of functional metal-LIPSS materials such as surface-enhanced Raman spectroscopy substrates.

2.
Langmuir ; 37(12): 3740-3750, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33740377

RESUMO

We report the deposition of cubic copper nanoparticles (Cu NPs) of varying size and particle density on silicon laser-induced periodic surface structures via reactive laser ablation in liquid (RLAL) using intense femtosecond laser pulses. Two syntheses were compared: (1) simultaneous deposition, wherein a silicon wafer was laser-processed in aqueous Cu(NO3)2 solution and (2) sequential deposition, wherein the silicon wafer was laser-processed in water and then exposed to aqueous Cu(NO3)2. Only simultaneous deposition resulted in high Cu loading and cubic Cu NPs deposited on the surface. The solution pH, Cu(NO3)2 concentration, and sample translation rate were varied to determine their effects on the size, morphology, and density of Cu NPs. Solution pH near ∼6.8 maximized Cu deposition. The Cu(NO3)2 concentration affected the Cu NP morphology but not the size or Cu loading. The sample translation rate most significantly affected the Cu loading, particle size, and particle density. The observed synthesis parameter dependence of these Cu NP properties resembles results by electrodeposition to grow Cu NPs on silicon surfaces, which suggests that Cu NP deposition by RLAL follows a mechanism similar to electrodeposition.

3.
Langmuir ; 36(34): 10120-10129, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787031

RESUMO

Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces for various applications. However, little is known about the chemical composition of these laser-processed surfaces, and the reaction mechanisms leading to their formation are poorly understood. In this work, we report the formation of gold-silicon nanostructured surfaces through reactive laser ablation in liquid. Silicon wafers were immersed in pH-controlled solutions of KAuCl4 and processed with ultrashort laser pulses. Gold deposition on the silicon wafers was found to depend on the pH of the precursor solution: neutral solutions (pH ∼6.3) resulted in much higher gold deposition than acidic or basic solutions. Laser processing of silicon wafers in water followed by immersion in the KAuCl4 solution resulted in lower gold deposition. X-ray photoelectron spectroscopy and depth profiling showed the existence of both gold (Au0) and gold-silicide (AuxSi) phases on the surfaces. Under both types of processing conditions, the gold atomic fraction and gold-silicide content increased with depth to at least 150 nm into the surface of the silicon wafer, although significantly more gold and gold-silicide were formed when the silicon was ablated in KAuCl4 solution as compared to immersion in KAuCl4 after ablation in water. Based on these data and existing literature on laser processing of silicon, we propose mechanisms that explain the observed gold penetration depth and its deposition dependence on solution pH. The mechanistic understanding gained in this work may be useful for synthesizing a variety of metal-silicon composite surfaces through laser processing to prepare functional materials such as catalysts and surface-enhanced Raman spectroscopy substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA