Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 16(12): e1009190, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370286

RESUMO

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease.


Assuntos
Densidade Óssea/genética , Regulação da Expressão Gênica/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/genética , Animais , Feminino , Ontologia Genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Caracteres Sexuais , Transcriptoma
2.
Handb Exp Pharmacol ; 262: 451-473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31820174

RESUMO

The 11 existing FDA-approved osteoporosis drug treatments include hormone replacement therapy, 2 SERMs (raloxifene and bazedoxifene), 5 inhibitors of bone-resorbing osteoclasts (4 bisphosphonates and anti-RANKL denosumab), 2 parathyroid hormone analogues (teriparatide and abaloparatide), and 1 WNT signaling enhancer (romosozumab). These therapies are effective and provide multiple options for patients and physicians. As the genomic revolution continues, potential novel targets for future drug development are identified. This review takes a wide perspective to describe potentially rewarding topics to explore, including knowledge of genes and pathways involved in bone cell metabolism, the utility of animal models, targeting drugs to bone, and ongoing advances in drug design and delivery.


Assuntos
Osteoporose , Animais , Difosfonatos/uso terapêutico , Terapia de Reposição Hormonal , Humanos , Teriparatida/uso terapêutico
3.
Vet Pathol ; 57(5): 723-735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32638637

RESUMO

Mice with an inactivating mutation in the gene encoding asparagine synthetase domain containing 1 (ASNSD1) develop a progressive degenerative myopathy that results in severe sarcopenia and myosteatosis. ASNSD1 is conserved across many species, and whole body gene expression surveys show maximal expression levels of ASNSD1 in skeletal muscle. However, potential functions of this protein have not been previously reported. Asnsd1-/- mice demonstrated severe muscle weakness, and their normalized body fat percentage on both normal chow and high fat diets was greater than 2 SD above the mean for 3651 chow-fed and 2463 high-fat-diet-fed knockout (KO) lines tested. Histologic lesions were essentially limited to the muscle and were characterized by a progressive degenerative myopathy with extensive transdifferentiation and replacement of muscle by well-differentiated adipose tissue. There was minimal inflammation, fibrosis, and muscle regeneration associated with this myopathy. In addition, the absence of any signs of lipotoxicity in Asnsd1-/- mice despite their extremely elevated body fat percentage and low muscle mass suggests a role for metabolic dysfunctions in the development of this phenotype. Asnsd1-/- mice provide the first insight into the function of this protein, and this mouse model could prove useful in elucidating fundamental metabolic interactions between skeletal muscle and adipose tissue.


Assuntos
Aspartato-Amônia Ligase/genética , Modelos Animais de Doenças , Doenças Musculares/veterinária , Sarcopenia/veterinária , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/veterinária , Feminino , Humanos , Imuno-Histoquímica/veterinária , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Doenças Musculares/patologia , Fenótipo , Sarcopenia/patologia
4.
N Engl J Med ; 374(26): 2553-2562, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27355534

RESUMO

BACKGROUND: Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS: We evaluated four patients with Pyle's disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS: In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle's disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS: Our study showed that Pyle's disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.).


Assuntos
Densidade Óssea/genética , Remodelação Óssea/genética , Osteocondrodisplasias/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Adolescente , Animais , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/metabolismo , Remodelação Óssea/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Pré-Escolar , Modelos Animais de Doenças , Feminino , Deleção de Genes , Homeostase , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Osteocondrodisplasias/fisiopatologia , Análise de Sequência de DNA , Transdução de Sinais , Proteínas Wnt/metabolismo
5.
J Biomed Sci ; 24(1): 57, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818080

RESUMO

BACKGROUND: Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically dominant mutant line HST014 was established and further analyzed. METHODS: Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant line was carried out. RESULTS: The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1) gene which leads to the amino acid exchange Kctd1 I27N thereby affecting the functional BTB domain of the protein. This line is the first mouse model harboring a Kctd1 mutation. Kctd1 I27N homozygous mutant mice die perinatally. Standardized, systemic phenotypic analysis of Kctd1 I27N heterozygous mutants was carried out in the German Mouse Clinic (GMC). Systematic morphological investigation of the external physical appearance did not detect the specific alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The main pathological phenotype of the Kctd1 I27N heterozygous mutant mice consists of kidney dysfunction and secondary effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs) in kidneys of Kctd1 I27N heterozygous mutants as compared to wild-type controls. CONCLUSIONS: In summary, the main alteration of the Kctd1 I27N heterozygous mutants consists in kidney dysfunction. Additional analyses in 9-21 week-old heterozygous mutants revealed only few minor effects.


Assuntos
Proteínas Correpressoras/genética , Modelos Animais de Doenças , Nefropatias/genética , Rim/fisiopatologia , Camundongos , Mutação , Animais , Feminino , Masculino , Camundongos Endogâmicos C3H , Fenótipo
6.
Mamm Genome ; 27(11-12): 587-598, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671791

RESUMO

Animal models resembling human mutations are valuable tools to research the features of complex human craniofacial syndromes. This is the first report on a viable dominant mouse model carrying a non-synonymous sequence variation within the endothelin receptor type A gene (Ednra c.386A>T, p.Tyr129Phe) derived by an ENU mutagenesis program. The identical amino acid substitution was reported recently as disease causing in three individuals with the mandibulofacial dysostosis with alopecia (MFDA, OMIM 616367) syndrome. We performed standardized phenotyping of wild-type, heterozygous, and homozygous Ednra Y129F mice within the German Mouse Clinic. Mutant mice mimic the craniofacial phenotypes of jaw dysplasia, micrognathia, dysplastic temporomandibular joints, auricular dysmorphism, and missing of the squamosal zygomatic process as described for MFDA-affected individuals. As observed in MFDA-affected individuals, mutant Ednra Y129F mice exhibit hearing impairment in line with strong abnormalities of the ossicles and further, reduction of some lung volumetric parameters. In general, heterozygous and homozygous mice demonstrated inter-individual diversity of expression of the craniofacial phenotypes as observed in MFDA patients but without showing any cleft palates, eyelid defects, or alopecia. Mutant Ednra Y129F mice represent a valuable viable model for complex human syndromes of the first and second pharyngeal arches and for further studies and analysis of impaired endothelin 1 (EDN1)-endothelin receptor type A (EDNRA) signaling. Above all, Ednra Y129F mice model the recently published human MFDA syndrome and may be helpful for further disease understanding and development of therapeutic interventions.


Assuntos
Alopecia/genética , Disostose Mandibulofacial/genética , Receptor de Endotelina A/genética , Alopecia/fisiopatologia , Animais , Genótipo , Humanos , Disostose Mandibulofacial/fisiopatologia , Camundongos , Mutação , Fenótipo , Transdução de Sinais
9.
J Cell Biochem ; 116(10): 2139-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25833316

RESUMO

During the past two decades effective drugs for treating osteoporosis have been developed, including anti-resorptives inhibiting bone resorption (estrogens, the SERM raloxifene, four bisphosphonates, RANKL inhibitor denosumab) and the anabolic bone forming daily injectable peptide teriparatide. Two potential drugs (odanacatib and romosozumab) are in late stage clinical development. The most pressing unmet need is for orally active anabolic drugs. This review describes the basic biological studies involved in developing these drugs, including the animal models employed for osteoporosis drug development. The genomics revolution continues to identify potential novel osteoporosis drug targets. Studies include human GWAS studies and identification of mutant genes in subjects having abnormal bone mass, mouse QTL and gene knockouts, and gene expression studies. Multiple lines of evidence indicate that Wnt signaling plays a major role in regulating bone formation and continued study of this complex pathway is likely to lead to key discoveries. In addition to the classic Wnt signaling targets DKK1 and sclerostin, LRP4, LRP5/LRP6, SFRP4, WNT16, and NOTUM can potentially be targeted to modulate Wnt signaling. Next-generation whole genome and exome sequencing, RNA-sequencing and CRISPR/CAS9 gene editing are new experimental techniques contributing to understanding the genome. The International Knockout Mouse Consortium efforts to knockout and phenotype all mouse genes are poised to accelerate. Accumulating knowledge will focus attention on readily accessible databases (Big Data). Efforts are underway by the International Bone and Mineral Society to develop an annotated Skeletome database providing information on all genes directly influencing bone mass, architecture, mineralization or strength.


Assuntos
Reabsorção Óssea/genética , Terapia de Alvo Molecular , Osteoporose/genética , Via de Sinalização Wnt/genética , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Catepsina K/genética , Catepsina K/metabolismo , Denosumab/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Osteoporose/tratamento farmacológico , Osteoporose/patologia
10.
PLoS Genet ; 8(7): e1002718, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22792070

RESUMO

To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1 × 10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ± 500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6 × 10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42 × 10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9 × 10(-16)) and rs7801723 (P = 8.9 × 10(-28)), also mapping to C7orf58 (r(2) = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.


Assuntos
Alelos , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Osteoporose/genética , Proteínas Wnt/genética , Adulto , Fatores Etários , Animais , Densidade Óssea/fisiologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Heterogeneidade Genética , Humanos , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Crânio/fisiologia
11.
PLoS Genet ; 8(7): e1002745, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22792071

RESUMO

We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12), and -0.16 SD per G allele, P = 1.2 × 10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6) and rs2707466: OR = 1.22, P = 7.2 × 10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13)

Assuntos
Densidade Óssea/genética , Fraturas Ósseas/genética , Estudo de Associação Genômica Ampla , Osteoporose/genética , Proteínas Wnt/genética , Adolescente , Adulto , Animais , Densidade Óssea/fisiologia , Osso e Ossos/fisiologia , Criança , Pré-Escolar , Feminino , Fêmur , Antebraço , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
12.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878275

RESUMO

Genes regulating body fat are shared with high fidelity by mice and humans, indicating that mouse knockout (KO) phenotyping might identify valuable antiobesity drug targets. Male Mrs2 magnesium transporter (Mrs2) KO mice were recently reported as thin when fed a high-fat diet (HFD). They also exhibited increased energy expenditure (EE)/body weight and had beiged adipocytes that, along with isolated hepatocytes, demonstrated increased oxygen consumption, suggesting that increased EE drove the thin phenotype. Here we provide our data on these and additional assays in Mrs2 KO mice. We generated Mrs2 KO mice by homologous recombination. HFD-fed male and female Mrs2 KO mice had significantly less body fat, measured by quantitative magnetic resonance, than wild-type (WT) littermates. HFD-fed Mrs2 KO mice did not demonstrate increased EE by indirect calorimetry and could not maintain body temperature at 4 °C, consistent with their decreased brown adipose tissue stores but despite increased beige white adipose tissue. Instead, when provided a choice between HFD and low-fat diet (LFD), Mrs2 KO mice showed a significant 15% decrease in total energy intake resulting from significantly lower HFD intake that offset numerically increased LFD intake. Food restriction studies performed using WT mice suggested that this decrease in energy intake could explain the loss of body fat. Oral glucose tolerance test studies revealed significantly improved insulin sensitivity in Mrs2 KO mice. We conclude that HFD-fed Mrs2 KO mice are thin with improved insulin sensitivity, and that this favorable metabolic phenotype is driven by hypophagia. Further evaluation is warranted to determine the suitability of MRS2 as a drug target for antiobesity therapeutics.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Camundongos Knockout , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo/metabolismo , Peso Corporal , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Camundongos Endogâmicos C57BL
13.
Am J Physiol Endocrinol Metab ; 304(2): E117-30, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23149623

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.


Assuntos
Glicemia/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética , Animais , Glicemia/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/urina , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Teste de Tolerância a Glucose , Glicosúria/genética , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportador 1 de Glucose-Sódio/fisiologia , Transportador 2 de Glucose-Sódio/fisiologia , Estreptozocina
14.
Bone Res ; 11(1): 9, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808149

RESUMO

Mutations in SFRP4 cause Pyle's bone disease with wide metaphyses and increased skeletal fragility. The WNT signaling pathway plays important roles in determining skeletal architecture and SFRP4 is a secreted Frizzled decoy receptor that inhibits WNT signaling. Seven cohorts of male and female Sfrp4 gene knockout mice, examined through 2 years of age, had a normal lifespan but showed cortical and trabecular bone phenotypes. Mimicking human Erlenmeyer flask deformities, bone cross-sectional areas were elevated 2-fold in the distal femur and proximal tibia but only 30% in femur and tibia shafts. Reduced cortical bone thickness was observed in the vertebral body, midshaft femur and distal tibia. Elevated trabecular bone mass and numbers were observed in the vertebral body, distal femur metaphysis and proximal tibia metaphysis. Midshaft femurs retained extensive trabecular bone through 2 years of age. Vertebral bodies had increased compressive strength, but femur shafts had reduced bending strength. Trabecular, but not cortical, bone parameters in heterozygous Sfrp4 mice were modestly affected. Ovariectomy resulted in similar declines in both cortical and trabecular bone mass in wild-type and Sfrp4 KO mice. SFRP4 is critical for metaphyseal bone modeling involved in determining bone width. Sfrp4 KO mice show similar skeletal architecture and bone fragility deficits observed in patients with Pyle's disease with SFRP4 mutations.

15.
Diabetes Metab Syndr Obes ; 15: 45-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023939

RESUMO

PURPOSE: Humans with haploinsufficiency of GPR75, an orphan GPCR, are thin. Gpr75 knockout (KO) mice are also thin with improved glucose homeostasis. We wanted to confirm these findings in Gpr75 KO mice and determine whether decreased energy intake and/or increased energy expenditure contributed to the thin phenotype. METHODS: Gpr75 KO mice were generated by homologous recombination. All studies compared female and male Gpr75 KO mice to their wild type (WT) littermates. Body composition was measured by DXA and QMR technologies. Glucose homeostasis was evaluated by measuring glucose and insulin levels during oral glucose tolerance tests (OGTTs). Food intake was measured in group-housed mice. In singly housed mice, energy expenditure was measured in Oxymax indirect calorimetry chambers, and locomotor activity was measured in Oxymax and Photobeam Activity System chambers. RESULTS: In all 12 cohorts of adult female or male mice, Gpr75 KO mice had less body fat; pooled data showed that, compared to WT littermates (n = 103), Gpr75 KO mice (n = 118) had 49% less body fat and 4% less LBM (P < 0.001 for each). KO mice also had 8% less body fat at weaning (P < 0.05), and during the month after weaning as the thin phenotype became more exaggerated, Gpr75 KO mice ate significantly less than, but had energy expenditure and activity levels comparable to, their WT littermates. During OGTTs, Gpr75 KO mice showed improved glucose tolerance (glucose AUC 23% lower in females, P < 0.05, and 26% lower in males, P < 0.001), accompanied by significantly decreased insulin levels and significantly increased insulin sensitivity indices. CONCLUSION: Gpr75 KO mice are thin at weaning, are hypophagic as the thin phenotype becomes more exaggerated, and exhibit improved glucose tolerance and insulin sensitivity as healthy-appearing adults. These results suggest that inhibiting GPR75 in obese humans may safely decrease energy intake and body fat while improving glucose tolerance and insulin sensitivity.

16.
Bone ; 145: 115040, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31437568

RESUMO

Hip fractures at the femoral neck are a major cause of morbidity and mortality, but aside from biomechanical strength testing, little is known about femoral neck architecture in mice. Procedures were optimized to analyze high-resolution (6 µm voxel size) microCT scans of the mouse femoral neck to provide bone mass and architectural information. Similar to histomorphometric observations in rats, the boundary between cortical and trabecular bone is difficult to identify in the mouse femoral mid-neck and these compartments were not analyzed separately. Analyses included total area, mineralized bone area, and bone volume fraction (BV/TV). Femoral neck architecture varies in C57BL/6J, 129/SvEv and BALB/c mouse strains. Bone cross sectional area and BV/TV were low in Lrp5 but elevated in Sost gene knockout mice. Sfrp4 gene knockout resulted in high total area, normal bone area, low BV/TV and, as indicated by BS/BV values, greater trabecularization. Femoral neck BV/TV declined with age and ovariectomy, but increased with teriparatide treatment. These findings demonstrate that the architecture of the mouse femoral neck mimics phenotypes and treatment effects observed at other skeletal sites and is a relevant bone site for translational studies examining osteoporosis therapies.


Assuntos
Densidade Óssea , Colo do Fêmur , Animais , Feminino , Colo do Fêmur/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas , Ratos , Microtomografia por Raio-X
17.
Diabetes Metab Syndr Obes ; 14: 3753-3785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483672

RESUMO

PURPOSE: Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS: KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS: Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION: These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.

18.
Diabetes Metab Syndr Obes ; 13: 2641-2652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801815

RESUMO

PURPOSE: In humans, single nucleotide polymorphisms (SNPs) near the adjacent protein kinase D1 (PRKD1) and G2/M-phase-specific E3 ubiquitin protein ligase (G2E3) genes on chromosome 14 are associated with obesity. To date, no published evidence links inactivation of either gene to changes in body fat. These two genes are also adjacent on mouse chromosome 12. Because obesity genes are highly conserved between humans and mice, we analyzed body fat in adult G2e3 and Prkd1 knockout (KO) mice to determine whether inactivating either gene leads to obesity in mice and, by inference, probably in humans. METHODS: The G2e3 and Prkd1 KO lines were generated by gene trapping and by homologous recombination methodologies, respectively. Body fat was measured by DEXA in adult mice fed chow from weaning and by QMR in a separate cohort of mice fed high-fat diet (HFD) from weaning. Glucose homeostasis was evaluated with oral glucose tolerance tests (OGTTs) performed on adult mice fed HFD from weaning. RESULTS: Body fat was increased in multiple cohorts of G2e3 KO mice relative to their wild-type (WT) littermates. When data from all G2e3 KO (n=32) and WT (n=31) mice were compared, KO mice showed increases of 11% in body weight (P<0.01), 65% in body fat (P<0.001), 48% in % body fat (P<0.001), and an insignificant 3% decrease in lean body mass. G2e3 KO mice were also glucose intolerant during an OGTT (P<0.05). In contrast, Prkd1 KO and WT mice had comparable body fat levels and glucose tolerance. CONCLUSION: Significant obesity and glucose intolerance were observed in G2e3, but not Prkd1, KO mice. The conservation of obesity genes between mice and humans strongly suggests that the obesity-associated SNPs located near the human G2E3 and PRKD1 genes are linked to variants that decrease the amount of functional human G2E3.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32117046

RESUMO

The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1) do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders. SIGNIFICANCE: Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.

20.
Dis Model Mech ; 12(5)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064765

RESUMO

Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.


Assuntos
Doença/genética , Sistemas de Liberação de Medicamentos , Técnicas de Inativação de Genes , Mutação/genética , Animais , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA