Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 93(5): 1029-1039, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641645

RESUMO

OBJECTIVE: Bradykinesia is the major cardinal motor sign of Parkinson disease (PD), but its neural underpinnings are unclear. The goal of this study was to examine whether changes in bradykinesia following long-term subthalamic nucleus (STN) deep brain stimulation (DBS) are linked to local STN beta (13-30 Hz) dynamics or a wider bilateral network dysfunction. METHODS: Twenty-one individuals with PD implanted with sensing neurostimulators (Activa® PC + S, Medtronic, PLC) in the STN participated in a longitudinal 'washout' therapy study every three to 6 months for an average of 3 years. At each visit, participants were withdrawn from medication (12/24/48 hours) and had DBS turned off (>60 minutes) before completing a repetitive wrist-flexion extension task, a validated quantitative assessment of bradykinesia, while local field potentials were recorded. Local STN beta dynamics were investigated via beta power and burst duration, while interhemispheric beta synchrony was assessed with STN-STN beta coherence. RESULTS: Higher interhemispheric STN beta coherence, but not contralateral beta power or burst duration, was significantly associated with worse bradykinesia. Bradykinesia worsened off therapy over time. Interhemispheric STN-STN beta coherence also increased over time, whereas beta power and burst duration remained stable. The observed change in bradykinesia was related to the change in interhemispheric beta coherence, with greater increases in synchrony associated with further worsening of bradykinesia. INTERPRETATION: Together, these findings implicate interhemispheric beta synchrony as a neural correlate of the progression of bradykinesia following chronic STN DBS. This could imply the existence of a pathological bilateral network contributing to bradykinesia in PD. ANN NEUROL 2023;93:1029-1039.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Hipocinesia/complicações , Estimulação Encefálica Profunda/efeitos adversos , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia
2.
Neurobiol Dis ; 185: 106243, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524210

RESUMO

BACKGROUND: Approximately one third of recently diagnosed Parkinson's disease (PD) patients experience cognitive decline. The nucleus basalis of Meynert (NBM) degenerates early in PD and is crucial for cognitive function. The two main NBM white matter pathways include a lateral and medial trajectory. However, research is needed to determine which pathway, if any, are associated with PD-related cognitive decline. METHODS: Thirty-seven PD patients with no mild cognitive impairment (MCI) were included in this study. Participants either developed MCI at 1-year follow up (PD MCI-Converters; n = 16) or did not (PD no-MCI; n = 21). Mean diffusivity (MD) and fractional anisotropy (FA) of the medial and lateral NBM tracts were extracted using probabilistic tractography. Between-group differences in MD and FA for each tract was compared using ANCOVA, controlling for age, sex, and disease duration. Control comparisons of the internal capsule MD and FA were also performed. Associations between baseline MD or FA and cognitive outcomes (working memory, psychomotor speed, delayed recall, and visuospatial function) were assessed using linear mixed models. RESULTS: PD MCI-Converters had significantly greater MD and lower FA (p < .001) of both NBM tracts compared to PD no-MCI. No difference was found in the MD (p = .06) or FA (p = .31) of the control region. Trends were identified between: 1) lateral tract MD and FA with working memory decline; and 2) medial tract MD and reduced psychomotor speed. CONCLUSIONS: Reduced integrity of the NBM tracts is evident in PD patients up to one year prior to the development of MCI. Thus, deterioration of the NBM tracts in PD may be an early marker of those at risk of cognitive decline.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Substância Branca , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Cognição , Imagem de Difusão por Ressonância Magnética
3.
Brain ; 144(2): 473-486, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301569

RESUMO

No biomarker of Parkinson's disease exists that allows clinicians to adjust chronic therapy, either medication or deep brain stimulation, with real-time feedback. Consequently, clinicians rely on time-intensive, empirical, and subjective clinical assessments of motor behaviour and adverse events to adjust therapies. Accumulating evidence suggests that hypokinetic aspects of Parkinson's disease and their improvement with therapy are related to pathological neural activity in the beta band (beta oscillopathy) in the subthalamic nucleus. Additionally, effectiveness of deep brain stimulation may depend on modulation of the dorsolateral sensorimotor region of the subthalamic nucleus, which is the primary site of this beta oscillopathy. Despite the feasibility of utilizing this information to provide integrated, biomarker-driven precise deep brain stimulation, these measures have not been brought together in awake freely moving individuals. We sought to directly test whether stimulation-related improvements in bradykinesia were contingent on reduction of beta power and burst durations, and/or the volume of the sensorimotor subthalamic nucleus that was modulated. We recorded synchronized local field potentials and kinematic data in 16 subthalamic nuclei of individuals with Parkinson's disease chronically implanted with neurostimulators during a repetitive wrist-flexion extension task, while administering randomized different intensities of high frequency stimulation. Increased intensities of deep brain stimulation improved movement velocity and were associated with an intensity-dependent reduction in beta power and mean burst duration, measured during movement. The degree of reduction in this beta oscillopathy was associated with the improvement in movement velocity. Moreover, the reduction in beta power and beta burst durations was dependent on the theoretical degree of tissue modulated in the sensorimotor region of the subthalamic nucleus. Finally, the degree of attenuation of both beta power and beta burst durations, together with the degree of overlap of stimulation with the sensorimotor subthalamic nucleus significantly explained the stimulation-related improvement in movement velocity. The above results provide direct evidence that subthalamic nucleus deep brain stimulation-related improvements in bradykinesia are related to the reduction in beta oscillopathy within the sensorimotor region. With the advent of sensing neurostimulators, this beta oscillopathy combined with lead location could be used as a marker for real-time feedback to adjust clinical settings or to drive closed-loop deep brain stimulation in freely moving individuals with Parkinson's disease.


Assuntos
Ritmo beta , Estimulação Encefálica Profunda , Hipocinesia/diagnóstico , Hipocinesia/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Hipocinesia/complicações , Masculino , Pessoa de Meia-Idade , Atividade Motora , Vias Neurais/fisiopatologia , Doença de Parkinson/complicações
4.
J Neuroeng Rehabil ; 19(1): 20, 2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35152881

RESUMO

BACKGROUND: Freezing of gait, a common symptom of Parkinson's disease, presents as sporadic episodes in which an individual's feet suddenly feel stuck to the ground. Inertial measurement units (IMUs) promise to enable at-home monitoring and personalization of therapy, but there is a lack of consensus on the number and location of IMUs for detecting freezing of gait. The purpose of this study was to assess IMU sets in the context of both freezing of gait detection performance and patient preference. METHODS: Sixteen people with Parkinson's disease were surveyed about sensor preferences. Raw IMU data from seven people with Parkinson's disease, wearing up to eleven sensors, were used to train convolutional neural networks to detect freezing of gait. Models trained with data from different sensor sets were assessed for technical performance; a best technical set and minimal IMU set were identified. Clinical utility was assessed by comparing model- and human-rater-determined percent time freezing and number of freezing events. RESULTS: The best technical set consisted of three IMUs (lumbar and both ankles, AUROC = 0.83), all of which were rated highly wearable. The minimal IMU set consisted of a single ankle IMU (AUROC = 0.80). Correlations between these models and human raters were good to excellent for percent time freezing (ICC = 0.93, 0.89) and number of freezing events (ICC = 0.95, 0.86) for the best technical set and minimal IMU set, respectively. CONCLUSIONS: Several IMU sets consisting of three IMUs or fewer were highly rated for both technical performance and wearability, and more IMUs did not necessarily perform better in FOG detection. We openly share our data and software to further the development and adoption of a general, open-source model that uses raw signals and a standard sensor set for at-home monitoring of freezing of gait.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Redes Neurais de Computação , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Preferência do Paciente
5.
Proc Natl Acad Sci U S A ; 115(1): 192-197, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255043

RESUMO

Reward hypersensitization is a common feature of neuropsychiatric disorders, manifesting as impulsivity for anticipated incentives. Temporally specific changes in activity within the nucleus accumbens (NAc), which occur during anticipatory periods preceding consummatory behavior, represent a critical opportunity for intervention. However, no available therapy is capable of automatically sensing and therapeutically responding to this vulnerable moment in time when anticipation-related neural signals may be present. To identify translatable biomarkers for an off-the-shelf responsive neurostimulation system, we record local field potentials from the NAc of mice and a human anticipating conventional rewards. We find increased power in 1- to 4-Hz oscillations predominate during reward anticipation, which can effectively trigger neurostimulation that reduces consummatory behavior in mice sensitized to highly palatable food. Similar oscillations are present in human NAc during reward anticipation, highlighting the translational potential of our findings in the development of a treatment for a major unmet need.


Assuntos
Comportamento Consumatório/fisiologia , Ritmo Delta/fisiologia , Núcleo Accumbens/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos
6.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920070

RESUMO

Freezing of gait (FOG), a debilitating symptom of Parkinson's disease (PD), can be safely studied using the stepping in place (SIP) task. However, clinical, visual identification of FOG during SIP is subjective and time consuming, and automatic FOG detection during SIP currently requires measuring the center of pressure on dual force plates. This study examines whether FOG elicited during SIP in 10 individuals with PD could be reliably detected using kinematic data measured from wearable inertial measurement unit sensors (IMUs). A general, logistic regression model (area under the curve = 0.81) determined that three gait parameters together were overall the most robust predictors of FOG during SIP: arrhythmicity, swing time coefficient of variation, and swing angular range. Participant-specific models revealed varying sets of gait parameters that best predicted FOG for each participant, highlighting variable FOG behaviors, and demonstrated equal or better performance for 6 out of the 10 participants, suggesting the opportunity for model personalization. The results of this study demonstrated that gait parameters measured from wearable IMUs reliably detected FOG during SIP, and the general and participant-specific gait parameters allude to variable FOG behaviors that could inform more personalized approaches for treatment of FOG and gait impairment in PD.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Humanos , Doença de Parkinson/diagnóstico
7.
Neurobiol Dis ; 146: 105134, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045357

RESUMO

Parkinson's disease (PD) is a systemic brain disorder where the cortical cholinergic network begins to degenerate early in the disease process. Readily accessible, quantitative, and specific behavioral markers of the cortical cholinergic network are lacking. Although degeneration of the dopaminergic network may be responsible for deficits in cardinal motor signs, the control of gait is a complex process and control of higher-order aspects of gait, such as gait variability, may be influenced by cognitive processes attributed to cholinergic networks. We investigated whether swing time variability, a metric of gait variability that is independent from gait speed, was a quantitative behavioral marker of cortical cholinergic network integrity in PD. Twenty-two individuals with PD and subthalamic nucleus (STN) deep brain stimulation (PD-DBS cohort) and twenty-nine age-matched controls performed a validated stepping-in-place (SIP) task to assess swing time variability off all therapy. The PD-DBS cohort underwent structural MRI scans to measure gray matter volume of the Nucleus Basalis of Meynert (NBM), the key node in the cortical cholinergic network. In order to determine the role of the dopaminergic system on swing time variability, it was measured ON and OFF STN DBS in the PD-DBS cohort, and on and off dopaminergic medication in a second PD cohort of thirty-two individuals (PD-med). A subset of eleven individuals in the PD-DBS cohort completed the SIP task again off all therapy after three years of continuous DBS to assess progression of gait impairment. Swing time variability was significantly greater (i.e., worse) in PD compared to controls and greater swing time variability was related to greater atrophy of the NBM, as was gait speed. STN DBS significantly improved cardinal motor signs and gait speed but did not improve swing time variability, which was replicated in the second cohort using dopaminergic medication. Swing time variability continued to worsen in PD, off therapy, after three years of continuous STN DBS, and NBM atrophy showed a trend for predicting the degree of increase. In contrast, cardinal motor signs did not progress. These results demonstrate that swing time variability is a reliable marker of cortical cholinergic health, and support a framework in which higher-order aspects of gait control in PD are reliant on the cortical cholinergic system, in contrast to other motor aspects of PD that rely on the dopaminergic network.


Assuntos
Atrofia/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Atrofia/patologia , Núcleo Basal de Meynert/fisiopatologia , Estimulação Encefálica Profunda/métodos , Feminino , Transtornos Neurológicos da Marcha/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia
8.
Mov Disord ; 35(11): 1905-1913, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32633860

RESUMO

BACKGROUND: Young plasma infusions have emerged as a potential treatment for neurodegenerative disease, and convalescent plasma therapy has been used safely in the management of viral pandemics. However, the effect of plasma therapy in Parkinson's disease (PD) is unknown. OBJECTIVES: The objective of this study was to determine the safety, tolerability, and feasibility of plasma infusions in people with PD. METHODS: A total of 15 people with clinically established PD, at least 1 cognitive complaint, and on stable therapy received 1 unit of young fresh frozen plasma twice a week for 4 weeks. Assessments and adverse effects were performed/reported on and off therapy at baseline, immediately after, and 4 weeks after the infusions ended. Adverse effects were also assessed during infusions. The primary outcomes were safety, tolerability, and feasibility. Exploratory outcomes included Unified Parkinson's Disease Rating Scale Part III off medication, neuropsychological battery, Parkinson's Disease Questionnaire-39, inflammatory markers (tumor necrosis factor-α, interleukin-6), uric acid, and quantitative kinematics. RESULTS: Adherence rate was 100% with no serious adverse effects. There was evidence of improvement in phonemic fluency (P = 0.002) and in the Parkinson's Disease Questionnaire-39 stigma subscore (P = 0.013) that were maintained at the delayed evaluation. Elevated baseline tumor necrosis factor-α levels decreased 4 weeks after the infusions ended. CONCLUSIONS: Young fresh frozen plasma was safe, feasible, and well tolerated in people with PD, without serious adverse effects and with preliminary evidence for improvements in phonemic fluency and stigma. The results of this study warrant further therapeutic investigations in PD and provide safety and feasibility data for plasma therapy in people with PD who may be at higher risk for severe complications of COVID-19. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transfusão de Componentes Sanguíneos/efeitos adversos , Doença de Parkinson/terapia , Plasma , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Antiparkinsonianos/uso terapêutico , Fenômenos Biomecânicos , COVID-19/epidemiologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Terapia Combinada , Estimulação Encefálica Profunda , Estudos de Viabilidade , Feminino , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/sangue , Doença de Parkinson/psicologia , Risco , Índice de Gravidade de Doença , Distúrbios da Fala/etiologia , Distúrbios da Fala/terapia , Fator de Necrose Tumoral alfa/sangue
9.
J Neurophysiol ; 120(4): 1932-1944, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020838

RESUMO

Clinical deep brain stimulation (DBS) technology is evolving to enable chronic recording of local field potentials (LFPs) that represent electrophysiological biomarkers of the underlying disease state. However, little is known about the biophysical basis of LFPs, or how the patient's unique brain anatomy and electrode placement impact the recordings. Therefore, we developed a patient-specific computational framework to analyze LFP recordings within a clinical DBS context. We selected a subject with Parkinson's disease implanted with a Medtronic Activa PC+S DBS system and reconstructed their subthalamic nucleus (STN) and DBS electrode location using medical imaging data. The patient-specific STN volume was populated with 235,280 multicompartment STN neuron models, providing a neuron density consistent with histological measurements. Each neuron received time-varying synaptic inputs and generated transmembrane currents that gave rise to the LFP signal recorded at DBS electrode contacts residing in a finite element volume conductor model. We then used the model to study the role of synchronous beta-band inputs to the STN neurons on the recorded power spectrum. Three bipolar pairs of simultaneous clinical LFP recordings were used in combination with an optimization algorithm to customize the neural activity parameters in the model to the patient. The optimized model predicted a 2.4-mm radius of beta-synchronous neurons located in the dorsolateral STN. These theoretical results enable biophysical dissection of the LFP signal at the cellular level with direct comparison to the clinical recordings, and the model system provides a scientific platform to help guide the design of DBS technology focused on the use of subthalamic beta activity in closed-loop algorithms. NEW & NOTEWORTHY The analysis of deep brain stimulation of local field potential (LFP) data is rapidly expanding from scientific curiosity to the basis for clinical biomarkers capable of improving the therapeutic efficacy of stimulation. With this growing clinical importance comes a growing need to understand the underlying electrophysiological fundamentals of the signals and the factors contributing to their modulation. Our model reconstructs the clinical LFP from first principles and highlights the importance of patient-specific factors in dictating the signals recorded.


Assuntos
Estimulação Encefálica Profunda/métodos , Potenciais Evocados , Modelos Neurológicos , Doença de Parkinson/fisiopatologia , Subtálamo/fisiologia , Ritmo beta , Humanos , Doença de Parkinson/terapia , Medicina de Precisão/métodos , Software , Subtálamo/diagnóstico por imagem
10.
Neurobiol Dis ; 120: 107-117, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30196050

RESUMO

Freezing of gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, institutionalization, and even death. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable, and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved challenges in the treatment of PD. Subcortical neural mechanisms of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry and measuring neural signals in real time in freely-moving subjects. Additionally, there is a lack of gait tasks that reliably elicit FOG. Since FOG is episodic, we hypothesized that dynamic features of subthalamic (STN) beta oscillations, or beta bursts, may contribute to the Freezer phenotype in PD during gait tasks that elicit FOG. We also investigated whether STN DBS at 60 Hz or 140 Hz affected beta burst dynamics and gait impairment differently in Freezers and Non-Freezers. Synchronized STN local field potentials, from an implanted, sensing neurostimulator (Activa® PC + S, Medtronic, Inc.), and gait kinematics were recorded in 12 PD subjects, off-medication during forward walking and stepping-in-place tasks under the following randomly presented conditions: NO, 60 Hz, and 140 Hz DBS. Prolonged movement band beta burst durations differentiated Freezers from Non-Freezers, were a pathological neural feature of FOG and were shortened during DBS which improved gait. Normal gait parameters, accompanied by shorter bursts in Non-Freezers, were unchanged during DBS. The difference between the mean burst duration between hemispheres (STNs) of all individuals strongly correlated with the difference in stride time between their legs but there was no correlation between mean burst duration of each STN and stride time of the contralateral leg, suggesting an interaction between hemispheres influences gait. These results suggest that prolonged STN beta burst durations measured during gait is an important biomarker for FOG and that STN DBS modulated long not short burst durations, thereby acting to restore physiological sensorimotor information processing, while improving gait.


Assuntos
Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Neuroestimuladores Implantáveis , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Feminino , Humanos , Masculino , Doença de Parkinson/fisiopatologia , Distribuição Aleatória , Núcleo Subtalâmico/fisiologia
11.
Neurobiol Dis ; 108: 288-297, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28890315

RESUMO

The goal of this study was to investigate subthalamic (STN) neural features of Freezers and Non-Freezers with Parkinson's disease (PD), while freely walking without freezing of gait (FOG) and during periods of FOG, which were better elicited during a novel turning and barrier gait task than during forward walking. METHODS: Synchronous STN local field potentials (LFPs), shank angular velocities, and ground reaction forces were measured in fourteen PD subjects (eight Freezers) off medication, OFF deep brain stimulation (DBS), using an investigative, implanted, sensing neurostimulator (Activa® PC+S, Medtronic, Inc.). Tasks included standing still, instrumented forward walking, stepping in place on dual forceplates, and instrumented walking through a turning and barrier course. RESULTS: During locomotion without FOG, Freezers showed lower beta (13-30Hz) power (P=0.036) and greater beta Sample Entropy (P=0.032), than Non-Freezers, as well as greater gait asymmetry and arrhythmicity (P<0.05 for both). No differences in alpha/beta power and/or entropy were evident at rest. During periods of FOG, Freezers showed greater alpha (8-12Hz) Sample Entropy (P<0.001) than during walking without FOG. CONCLUSIONS: A novel turning and barrier course was superior to FW in eliciting FOG. Greater unpredictability in subthalamic beta rhythms was evident during stepping without freezing episodes in Freezers compared to Non-Freezers, whereas greater unpredictability in alpha rhythms was evident in Freezers during FOG. Non-linear analysis of dynamic neural signals during gait in freely moving people with PD may yield greater insight into the pathophysiology of FOG; whether the increases in STN entropy are causative or compensatory remains to be determined. Some beta LFP power may be useful for rhythmic, symmetric gait and DBS parameters, which completely attenuate STN beta power may worsen rather than improve FOG.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Ritmo alfa , Antiparkinsonianos/uso terapêutico , Ritmo beta , Fenômenos Biomecânicos , Estimulação Encefálica Profunda , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Extremidade Inferior/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Processamento de Sinais Assistido por Computador , Núcleo Subtalâmico/efeitos dos fármacos , Caminhada/fisiologia
12.
Mov Disord ; 32(1): 80-88, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859579

RESUMO

BACKGROUND: The objective of this study was to investigate the hypothesis that attenuation of subthalamic nucleus (STN) alpha-/beta-band oscillations is causal to improvement in bradykinesia. METHODS: STN local field potentials from a sensing neurostimulator (Activa® PC+S; Medtronic, Inc.) and kinematics from wearable sensors were recorded simultaneously during 60- and 140-Hz deep brain stimulation (DBS) in 9 freely moving PD subjects (15 STNs) performing repetitive wrist flexion-extension. Kinematics were recorded during 20-Hz DBS in a subgroup. RESULTS: Both 60- and 140-Hz DBS improved the angular velocity and frequency of movement (P = 0.002 and P = 0.029, respectively, for 60 Hz; P < 0.001 and P < 0.001, respectively, for 140 Hz), but 60-Hz DBS did not attenuate beta-band power (13-30 Hz). In fact, 60-Hz DBS amplified alpha/low-beta (11-15 Hz, P = 0.007) and attenuated high-beta power (19-27 Hz, P < 0.001), whereas 140-Hz DBS broadly attenuated beta power (15-30 Hz, P < 0.001). Only 60-Hz DBS improved the regularity of angular range (P = 0.046) and 20-Hz DBS did not worsen bradykinesia. There was no correlation between beta-power modulation and bradykinesia. CONCLUSIONS: These novel results obtained from freely moving PD subjects demonstrated that both 140- and 60-Hz DBS improved bradykinesia and attenuated high beta oscillations; however, 60-Hz DBS amplified a subband of alpha/low-beta oscillations, and DBS at a beta-band frequency did not worsen bradykinesia. Based on recent literature, we suggest that both 140- and 60-Hz DBS decouple the cortico-STN hyperdirect pathway, whereas 60-Hz DBS increases coupling within striato-STN circuitry. These results inform future algorithms for closed-loop DBS in PD. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos , Hipocinesia/terapia , Avaliação de Processos e Resultados em Cuidados de Saúde , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda/normas , Feminino , Humanos , Hipocinesia/etiologia , Hipocinesia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
13.
Neurobiol Dis ; 96: 22-30, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27553876

RESUMO

Subthalamic nucleus (STN) local field potential (LFP) recordings demonstrate beta (13-30Hz) band oscillations in Parkinson's disease (PD) defined as elevations of spectral power. The amount of attenuation of beta band power on therapeutic levels of high frequency (HF) deep brain stimulation (DBS) and/or dopaminergic medication has been correlated with the degree of improvement in bradykinesia and rigidity from the therapy, which has led to the suggestion that elevated beta band power is a marker of PD motor disability. A fundamental question has not been answered: whether there is a prolonged attenuation of beta band power after withdrawal of chronic HF DBS and whether this is related to a lack of progression or even improvement in the underlying motor disability. Until now, in human PD subjects, STN LFP recordings were only attainable in the peri-operative period and after short periods of stimulation. For the first time, using an investigational, implanted sensing neurostimulator (Activa® PC+S, Medtronic, Inc.), STN LFPs and motor disability were recorded/assessed after withdrawal of chronic (6 and 12month) HF DBS in freely moving PD subjects. Beta band power was similar within 14s and 60min after stimulation was withdrawn, suggesting that "off therapy" experiments can be conducted almost immediately after stimulation is turned off. After withdrawal of 6 and 12months of STN DBS, beta band power was significantly lower (P<0.05 at 6 and 12months) and off therapy UPDRS scores were better (P<0.05 at 12months) compared to before DBS was started. The attenuation in beta band power was correlated with improvement in motor disability scores (P<0.05). These findings were supported by evidence of a gradual increase in beta band power in two unstimulated STNs after 24months and could not be explained by changes in lead impedance. This suggests that chronic HF DBS exerts long-term plasticity in the sensorimotor network, which may contribute to a lack of progression in underlying motor disability in PD.


Assuntos
Ritmo beta/fisiologia , Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Dopaminérgicos/uso terapêutico , Feminino , Humanos , Neuroestimuladores Implantáveis , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Análise Espectral , Fatores de Tempo
14.
Neuropsychol Rev ; 25(4): 384-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26608605

RESUMO

High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Animais , Humanos
15.
Mov Disord ; 30(13): 1750-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26360123

RESUMO

BACKGROUND: Investigations into the effect of deep brain stimulation (DBS) on subthalamic (STN) beta (13-30 Hz) oscillations have been performed in the perioperative period with the subject tethered to equipment. Using an embedded sensing neurostimulator, this study investigated whether beta power was similar in different resting postures and during forward walking in freely moving subjects with Parkinson's disease (PD) and whether STN DBS attenuated beta power in a voltage-dependent manner. METHODS: Subthalamic local field potentials were recorded from the DBS lead, using a sensing neurostimulator (Activa(®) PC+S, Medtronic, Inc., Food and Drug Administration- Investigational Device Exemption (IDE)-, institutional review board-approved) from 15 PD subjects (30 STNs) off medication during lying, sitting, and standing, during forward walking, and during randomized periods of 140 Hz DBS at 0 V, 1 V, and 2.5/3 V. Continuous video, limb angular velocity, and forearm electromyography recordings were synchronized with neural recordings. Data were parsed to avoid any movement or electrical artifact during resting states. RESULTS: Beta power was similar during lying, sitting, and standing (P = 0.077, n = 28) and during forward walking compared with the averaged resting state (P = 0.466, n = 24), although akinetic rigid PD subjects tended to exhibit decreased beta power when walking. Deep brain stimulation at 3 V and at 1 V attenuated beta power compared with 0 V (P < 0.003, n = 14), and this was voltage dependent (P < 0.001). CONCLUSIONS: Beta power was conserved during resting and forward walking states and was attenuated in a voltage-dependent manner during 140-Hz DBS. Phenotype may be an important consideration if this is used for closed-loop DBS.


Assuntos
Ritmo beta/fisiologia , Estimulação Encefálica Profunda , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Vigília/fisiologia , Adulto , Idoso , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade
16.
Int J Neurosci ; 125(7): 475-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25526555

RESUMO

The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.


Assuntos
Estimulação Encefálica Profunda/métodos , Cooperação Internacional , Doença de Parkinson/terapia , Síndrome de Tourette/terapia , Animais , Encéfalo/fisiologia , Humanos
17.
Res Sq ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343821

RESUMO

People with Parkinson's disease (PWP) face critical challenges, including lack of access to neurological care, inadequate measurement and communication of motor symptoms, and suboptimal medication management and compliance. We have developed QDG-Care: a comprehensive connected care platform for Parkinson's disease (PD) that delivers validated, quantitative metrics of all motor signs in PD in real time, monitors the effects of adjusting therapy and medication adherence and is accessible in the electronic health record. In this article, we describe the design and engineering of all components of QDG-Care, including the development and utility of the QDG Mobility and Tremor Severity Scores. We present the preliminary results and insights from the first at-home trial using QDG-Care. QDG technology has enormous potential to improve access to, equity of, and quality of care for PWP, and improve compliance with complex time-critical medication regimens. It will enable rapid "Go-NoGo" decisions for new therapeutics by providing high-resolution data that require fewer participants at lower cost and allow more diverse recruitment.

18.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

20.
Neuromodulation ; 16(3): 200-5; discussion 205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23094951

RESUMO

OBJECTIVES: 1) To characterize patterns of globus pallidus interna neural synchrony in patients with secondary dystonia; 2) to determine whether neural hypersynchrony in the globus pallidus externa (GPe) and interna (GPi) is attenuated during high frequency deep brain stimulation (HF DBS) in a patient with DYT3+ dystonia and in a patient with secondary dystonia due to childhood encephalitis. MATERIALS AND METHODS: We recorded local field potentials from the DBS lead in the GPi of four patients (seven hemispheres) with secondary dystonia and from one patient (two hemispheres) with primary DYT3+ dystonia. In two patients, we also recorded pallidal local field potentials during the administration of 10 sec epochs of HF DBS. RESULTS: Power spectral densities during rest demonstrated visible peaks in the beta band in seven out of nine cases. In DYT3+ dystonia, power in the alpha and beta bands, but not theta band, was attenuated during HF DBS in the GPe and in GPi, and attenuation was most prominent in the high beta band. This patient demonstrated an early and maintained improvement in dystonia. There was no beta peak and the power spectrum was not attenuated during HF DBS in a patient with secondary dystonia due to childhood encephalitis. CONCLUSIONS: These results suggest that beta hypersynchrony, demonstrated now in both primary and secondary dystonia, may play a pathophysiological role in pathological hyperkinesis. Further investigation is needed in a larger cohort of well-characterized primary and secondary dystonia patients.


Assuntos
Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/terapia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Globo Pálido/fisiologia , Descanso , Adulto , Feminino , Lateralidade Funcional , Globo Pálido/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Espectral , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA