RESUMO
Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.
Assuntos
Degeneração Hepatolenticular , Animais , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Hepatócitos/metabolismoRESUMO
Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.
Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Mães , Neurônios/metabolismo , Reprodução/fisiologia , Estruturas Animais/citologia , Estruturas Animais/inervação , Estruturas Animais/metabolismo , Animais , Regulação do Apetite/fisiologia , Feminino , Hiperfagia/metabolismo , Masculino , Neuropeptídeos/metabolismoRESUMO
PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.
Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , LinhagemRESUMO
Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50â years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70â years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.
Assuntos
Linhagem , Humanos , Masculino , Feminino , Criança , Adulto , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Animais , Extremidade Inferior/fisiopatologia , Caenorhabditis elegans , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , MutaçãoRESUMO
Ryanodine receptors (RyR) are essential regulators of cellular calcium homeostasis and signaling. Vertebrate genomes contain multiple RyR gene isoforms, expressed in different tissues and executing different functions. In contrast, invertebrate genomes contain a single RyR-encoding gene and it has long been proposed that different transcripts generated by alternative splicing may diversify their functions. Here, we analyze the expression and function of alternative exons in the C. elegans RyR gene unc-68. We show that specific isoform subsets are created via alternative promoters and via alternative splicing in unc-68 Divergent Region 2 (DR2), which actually corresponds to a region of high sequence variability across vertebrate isoforms. The expression of specific unc-68 alternative exons is enriched in different tissues, such as in body wall muscle, neurons and pharyngeal muscle. In order to infer the function of specific alternative promoters and alternative exons of unc-68, we selectively deleted them by CRISPR/Cas9 genome editing. We evaluated pharyngeal function, as well as locomotor function in swimming and crawling with high-content computer-assisted postural and behavioral analysis. Our data provide a comprehensive map of the pleiotropic impact of isoform-specific mutations and highlight that tissue-specific unc-68 isoforms fulfill distinct functions. As a whole, our work clarifies how the C. elegans single RyR gene unc-68 can fulfill multiple tasks through tissue-specific isoforms, and provide a solid foundation to further develop C. elegans as a model to study RyR channel functions and malfunctions.
Assuntos
Processamento Alternativo/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Contração Muscular/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Éxons , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Especificidade de Órgãos/genética , Isoformas de Proteínas/genética , Rianodina/metabolismoRESUMO
Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.
Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/fisiologia , Inseticidas/farmacologia , Biologia de Sistemas/métodos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/classificação , Automação , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Inseticidas/química , Inseticidas/classificação , Estrutura Molecular , FenótipoRESUMO
Ageing affects a wide range of phenotypes at all scales, but an objective measure of ageing remains challenging, even in simple model organisms. To measure the ageing process, we characterized the sequence of alterations of multiple phenotypes at organismal scale. Hundreds of morphological, postural, and behavioral features were extracted from high-resolution videos. Out of the 1019 features extracted, 896 are ageing biomarkers, defined as those that show a significant correlation with relative age (age divided by lifespan). We used support vector regression to predict age, remaining life and lifespan of individual C. elegans. The quality of these predictions (age R2 = 0.79; remaining life R2 = 0.77; lifespan R2 = 0.72) increased with the number of features added to the model, supporting the use of multiple features to quantify ageing. We quantified the rate of ageing as how quickly animals moved through a phenotypic space; we quantified health decline as the slope of the declining predicted remaining life. In both ageing dimensions, we found that short lived-animals aged faster than long-lived animals. In our conditions, for isogenic wild-type worms, the health decline of the individuals was scaled to their lifespan without significant deviation from the average for short- or long-lived animals.
Assuntos
Caenorhabditis elegans/fisiologia , Longevidade , Fenótipo , Algoritmos , Animais , Comportamento Animal , Biomarcadores/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Biologia Computacional , Simulação por Computador , Mutação , Estresse Oxidativo , Prognóstico , Análise de Regressão , Reprodutibilidade dos Testes , Estresse Mecânico , Fatores de Tempo , Gravação em VídeoRESUMO
The glassiness of polymer melts is generally considered to be suppressed by small dimensions, added solvent, and heat. Here, we suggest that glassiness persists at the nanoscale in worm-like micelles composed of amphiphilic diblock copolymers of poly(ethylene oxide)-polystyrene (PS). The glassiness of these worms is indicated by a lack of fluorescence recovery after photobleaching as well as micron-length rigid segments separated by hinges. The coarse-grained molecular dynamics studies probe the dynamics of the PS in these glassy worms. Addition of an organic solvent promotes a transition from hinged to fully flexible worms and to spheres or vesicles. Simulation demonstrates two populations of organic solvent in the core of the micelle-a solvent 'pool' in the micelle core and a second population that accumulates at the interface between the core and the corona. The stable heterogeneity of the residual solvent could explain the unusual hinged rigidity, but solvent removal during shear-extension could be more effective and yield - as observed - nearly straight worms without hinges.
RESUMO
A basic issue in the physics of behaviour is the mechanical relationship between an animal and its surroundings. The model nematode C. elegans provides an excellent platform to explore this relationship due to its anatomical simplicity. Nonetheless, the physics of nematode crawling, in which the worm undulates its body to move on a wet surface, is not completely understood and the mathematical models often used to describe this phenomenon are empirical. We confirm that linear resistive force theory, one such empirical model, is effective at predicting a worm's path from its sequence of body postures for forward crawling, reversing, and turning and for a broad range of different behavioural phenotypes observed in mutant worms. Worms recently isolated from the wild have a higher effective drag anisotropy than the laboratory-adapted strain N2 and most mutant strains. This means the wild isolates crawl with less surface slip, perhaps reflecting more efficient gaits. The drag anisotropies required to fit the observed locomotion data (70 ± 28 for the wild isolates) are significantly larger than the values measured by directly dragging worms along agar surfaces (3-10 in Rabets et al (2014 Biophys. J. 107 1980-7)). A proposed nonlinear extension of the resistive force theory model also provides accurate predictions, but does not resolve the discrepancy between the parameters required to achieve good path prediction and the experimentally measured parameters. We confirm that linear resistive force theory provides a good effective model of worm crawling that can be used in applications such as whole-animal simulations and advanced tracking algorithms, but that the nature of the physical interaction between worms and their most commonly studied laboratory substrate remains unresolved.
Assuntos
Caenorhabditis elegans/fisiologia , Locomoção , Animais , Fenômenos Biomecânicos , Modelos Lineares , Modelos Animais , Dinâmica não LinearRESUMO
Using low-cost automated tracking microscopes, we have generated a behavioral database for 305 Caenorhabditis elegans strains, including 76 mutants with no previously described phenotype. The growing database currently consists of 9,203 short videos segmented to extract behavior and morphology features, and these videos and feature data are available online for further analysis. The database also includes summary statistics for 702 measures with statistical comparisons to wild-type controls so that phenotypes can be identified and understood by users.
Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , Bases de Dados Factuais , Gravação em Vídeo/métodos , Algoritmos , Animais , Caenorhabditis elegans/genética , Mutação , Fenótipo , Reprodutibilidade dos Testes , Gravação em Vídeo/instrumentaçãoRESUMO
Locomotion is driven by shape changes coordinated by the nervous system through time; thus, enumerating an animal's complete repertoire of shape transitions would provide a basis for a comprehensive understanding of locomotor behaviour. Here we introduce a discrete representation of behaviour in the nematode C. elegans. At each point in time, the worm's posture is approximated by its closest matching template from a set of 90 postures and locomotion is represented as sequences of postures. The frequency distribution of postural sequences is heavy-tailed with a core of frequent behaviours and a much larger set of rarely used behaviours. Responses to optogenetic and environmental stimuli can be quantified as changes in postural syntax: worms show different preferences for different sequences of postures drawn from the same set of templates. A discrete representation of behaviour will enable the use of methods developed for other kinds of discrete data in bioinformatics and language processing to be harnessed for the study of behaviour.
Assuntos
Caenorhabditis elegans/fisiologia , Locomoção/fisiologia , Animais , Comportamento Animal , Análise por Conglomerados , Biologia Computacional , OptogenéticaRESUMO
Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in Caenorhabditis elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison or whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild-type worms, also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed phenotypes not previously detected by real-time observation and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.
Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Genes/genética , Locomoção/genética , Modelos Biológicos , Fenótipo , Animais , Comportamento Animal/classificação , Caenorhabditis elegans/classificação , Caenorhabditis elegans/fisiologia , Genética Comportamental/métodos , Locomoção/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Postura/fisiologia , Reprodutibilidade dos TestesRESUMO
Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.
Assuntos
Caenorhabditis elegans , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Proteinopatias TDP-43 , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neurônios Colinérgicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Neurônios GABAérgicos/metabolismo , Locomoção , Neurônios Motores/metabolismo , Movimento , Transmissão Sináptica , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismoRESUMO
Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.
Assuntos
Caenorhabditis elegans , Luz , Animais , Caenorhabditis elegans/genética , FenótipoRESUMO
We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid microtubule fluctuations in the longitudinal direction. We report the first high-resolution measurement of longitudinal microtubule fluctuations performed by tracing such pairs of co-moving peroxisomes. The resulting picture shows that motor-dependent longitudinal microtubule oscillations contribute significantly to cargo movement along microtubules. Thus, contrary to the conventional view, organelle transport cannot be described solely in terms of cargo movement along stationary microtubule tracks, but instead includes a strong contribution from the movement of the tracks.
Assuntos
Microtúbulos/fisiologia , Organelas/fisiologia , Animais , Transporte Biológico Ativo , Fenômenos Biofísicos , Biofísica , Linhagem Celular , Citoesqueleto/fisiologia , Drosophila , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Biológicos , Proteínas Motores Moleculares/fisiologia , Movimento , Peroxissomos/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Anaesthesia exposure to the developing nervous system causes neuroapoptosis and behavioural impairment in vertebrate models. Mechanistic understanding is limited, and target-based approaches are challenging. High-throughput methods may be an important parallel approach to drug-discovery and mechanistic research. The nematode worm Caenorhabditis elegans is an ideal candidate model. A rich subset of its behaviour can be studied, and hundreds of behavioural features can be quantified, then aggregated to yield a 'signature'. Perturbation of this behavioural signature may provide a tool that can be used to quantify the effects of anaesthetic regimes, and act as an outcome marker for drug screening and molecular target research. Larval C. elegans were exposed to: isoflurane, ketamine, morphine, dexmedetomidine, and lithium (and combinations). Behaviour was recorded, and videos analysed with automated algorithms to extract behavioural features. Anaesthetic exposure during early development leads to persisting behavioural variation (in total, 125 features across exposure combinations). Higher concentrations, and combinations of isoflurane with ketamine, lead to persistent change in a greater number of features. Morphine and dexmedetomidine do not appear to lead to behavioural impairment. Lithium rescues the neurotoxic phenotype produced by isoflurane. Findings correlate well with vertebrate research: impairment is dependent on agent, is concentration-specific, is more likely with combination therapies, and can potentially be rescued by lithium. These results suggest that C. elegans may be an appropriate model with which to pursue phenotypic screens for drugs that mitigate the neurobehavioural impairment. Some possibilities are suggested for how high-throughput platforms might be organised in service of this field.
Assuntos
Anestesia/métodos , Anestésicos Inalatórios/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Animais , Isoflurano/administração & dosagem , Ketamina/administração & dosagem , Morfina/administração & dosagemRESUMO
A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Caenorhabditis elegans/genética , Demência Frontotemporal/genética , Alanina , Animais , Arginina , Dipeptídeos/metabolismo , Feminino , Edição de Genes , Técnicas de Silenciamento de Genes , Glicina , Células HEK293 , Humanos , Pessoa de Meia-Idade , Neurônios Motores , Degeneração Neural , ProlinaRESUMO
Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging.