Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(12): 2873-2877, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507211

RESUMO

Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes.

2.
Langmuir ; 32(18): 4635-42, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27088712

RESUMO

Supercritical fluid carbon dioxide (sc-CO2) is capable of depositing nanoparticles in small structures of silicon substrates because of its gas-like penetration, liquid-like solvation abilities, and near-zero surface tension. In nanometer-sized shallow wells on silicon surface, formation of two-dimensional (2D) monolayer metal nanoparticle (NP) clusters can be achieved using the sc-CO2 deposition method. Nanoparticles tend to fill nanostructured holes first, and then, if sufficient nanoparticles are available, they will continue to cover the flat areas nearby, unless defects or other surface imperfections are available. In addition, SEM images of two-dimensional gold (Au) nanoparticle clusters formed on a flat silicon surface with two to a dozen or more of the nanoparticles are provided to illustrate the patterns of nanoparticle cluster formation in sc-CO2.

3.
Chemphyschem ; 13(8): 2068-73, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22467375

RESUMO

Using supercritical fluid CO(2) (Sc-CO(2)) as a medium, PbS nanoparticles can be uniformly deposited on surfaces of various substrates. Sc-CO(2) deposition of PbS nanoparticles on carbon-coated copper grids, into small holes in silicon, and formation of uniform PbS nanoparticle films on glass are described. Fluorescence spectra of PbS nanoparticles obtained from the films prepared by the Sc-CO(2) method indicate effective energy transfer between PbS nanoparticles of different sizes.

4.
Chemphyschem ; 13(1): 256-60, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22147515

RESUMO

A common complication in fabricating arrays of TiO(2) nanotubes is that they agglomerate into tightly packed bundles during the inevitable solvent evaporation step. This problem is particularly acute for template-fabricated TiO(2) nanotubes, as the geometric tunability of this technique enables relatively large inter-pore spacings or, from another perspective, more space for lateral displacement. Our work showed that agglomeration results from the surface tension forces that are present as the ambient solvent is evaporated from the nanotube film. Herein, we report a processing and fabrication approach that utilizes supercritical fluid drying (CO(2)) to prepare arrays of template-fabricated TiO(2) nanotubes that are free-standing and spatially isolated. This approach could be beneficial to many emerging technologies, such as solid-state dye-sensitized solar cells and vertically-oriented carbon nanotube electrodes.


Assuntos
Nanotubos/química , Titânio/química , Dióxido de Carbono/química , Corantes/química , Eletrodos , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Energia Solar
5.
Langmuir ; 26(2): 1117-23, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20000595

RESUMO

Silver sulfide and cadmium sulfide nanoparticles of controllable sizes are synthesized using a water-in-hexane microemulsion method and stabilized by dodecanethiol. The stabilized metal sulfide nanoparticles can be deposited homogenously on flat substrates forming ordered 2-D arrays in supercritical fluid carbon dioxide (Sc-CO(2)). The use of Sc-CO(2) leaves the particles unaffected by dewetting effects caused by traditional solvents and produces uniform arrays. The Sc-CO(2) deposition technique is capable of filling nanoparticles in nanostructures of silicon wafers which is difficult to accomplish by conventional solvent evaporation methods.

6.
Nat Commun ; 8(1): 296, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831042

RESUMO

State-of-the-art compact antennas rely on electromagnetic wave resonance, which leads to antenna sizes that are comparable to the electromagnetic wavelength. As a result, antennas typically have a size greater than one-tenth of the wavelength, and further miniaturization of antennas has been an open challenge for decades. Here we report on acoustically actuated nanomechanical magnetoelectric (ME) antennas with a suspended ferromagnetic/piezoelectric thin-film heterostructure. These ME antennas receive and transmit electromagnetic waves through the ME effect at their acoustic resonance frequencies. The bulk acoustic waves in ME antennas stimulate magnetization oscillations of the ferromagnetic thin film, which results in the radiation of electromagnetic waves. Vice versa, these antennas sense the magnetic fields of electromagnetic waves, giving a piezoelectric voltage output. The ME antennas (with sizes as small as one-thousandth of a wavelength) demonstrates 1-2 orders of magnitude miniaturization over state-of-the-art compact antennas without performance degradation. These ME antennas have potential implications for portable wireless communication systems.The miniaturization of antennas beyond a wavelength is limited by designs which rely on electromagnetic resonances. Here, Nan et al. have developed acoustically actuated antennas that couple the acoustic resonance of the antenna with the electromagnetic wave, reducing the antenna footprint by up to 100.

7.
Sci Rep ; 6: 32408, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581071

RESUMO

Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.

8.
Sci Rep ; 5: 7740, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582090

RESUMO

The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.

9.
Nat Commun ; 6: 6082, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25631924

RESUMO

Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a ~180° switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180° magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices.

10.
Sci Rep ; 4: 3688, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24418911

RESUMO

Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

11.
Adv Mater ; 25(10): 1435-9, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23303469

RESUMO

Dual E- and H-field control of microwave performance with enhanced ferromagnetic resonance (FMR) tunability has been demonstrated in microwave composites FeGaB/PZN-PT(011). A voltage-impulse-induced non-volatile magnetization switching was also realized in this work, resulting from the hysteretic type of phase transition in PZN-PT(011) at high electric fields. The results provide a framework for developing lightweight, energy efficient, voltage-tunable RF/microwave devices.

12.
Ultramicroscopy ; 127: 70-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23298538

RESUMO

The strain distribution across interfaces in InAs/GaSb superlattices grown on (100)-GaSb substrates is investigated by aberration corrected transmission electron microscopy. Atomic resolution images of interfaces were obtained by conventional high resolution transmission electron microscopy (HRTEM), using the negative spherical-aberration imaging mode, and by scanning transmission electron microscopy (STEM), using the high-angle annular dark-field (HAADF) imaging mode. The local atomic displacements across interfaces were determined from these images using the peak pair algorithm, from which strain maps were calculated with respect to a reference lattice extracted from the GaSb substrate region. Both techniques yield consistent results, which reveal that the InAs-on-GaSb interface is nearly strain balanced, whereas the GaSb-on-InAs interface is in tensile strain, indicating that the prevalent bond type at this interface is Ga-As. In addition, the GaSb layers in the superlattice are compressively strained indicating the incorporation of In into these layers. Further analysis of the HAADF-STEM images indicates an estimated 4% In content in the GaSb layers and that the GaSb-on-InAs interface contributes to about 27% of the overall superlattice strain. The strain measurements in the InAs layers are in good agreement with the theoretical values determined from elastic constants. Furthermore, the overall superlattice strain determined from this analysis is also in good agreement with the measurements determined by high-resolution X-ray diffraction.

13.
Adv Mater ; 25(35): 4886-92, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23857709

RESUMO

A critical challenge in realizing magnetoelectrics based on reconfigurable microwave devices, which is the ability to switch between distinct ferromagnetic resonances (FMR) in a stable, reversible and energy efficient manner, has been addressed. In particular, a voltage-impulse-induced two-step ferroelastic switching pathway can be used to in situ manipulate the magnetic anisotropy and enable non-volatile FMR tuning in FeCoB/PMN-PT (011) multiferroic heterostructures.

14.
Langmuir ; 23(21): 10429-32, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17854207

RESUMO

By lowering the reaction temperature during metal ion reduction in a reverse micelle system, gold nanoparticle size can be subtly tuned from 6.6 to 2.2 nm in diameter. Under these reaction conditions, the water-to-surfactant ratio (W value) also plays an important role in controlling the particle size, enabling a wide range of products obtainable via a simple, quick, reproducible synthesis. Particle sizes were measured by HRTEM, and size trends were supported by UV-vis spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA