Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(6): 1858-1868, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665861

RESUMO

The reproductive processes of several deciduous trees are highly sensitive to Zn deficiency. An understanding of the patterns of Zn storage and remobilization during bud development and bud break is critical for the development of fertilization strategies to prevent deficiencies and may be valuable in selection and breeding programs to develop more Zn-resilient cultivars. In this study, we provide insights into the in situ distribution of Zn in almond reproductive organs at tissue, cellular, and subcellular scales using synchrotron-based X-ray fluorescence. The concentrations of Zn in different parts of the vegetative and reproductive tissues were also analysed. Our results show that the small branches subtending the flower and fruit, pollen grain, transmitting tissues of styles, and seed embryo are all important storage sites for Zn. An increase in Zn concentrations in almond reproductive organs mostly occur during the expanding growth phase, such as bud-flush and the mid-fruit enlargement stage; however, Zn transport to floral parts and fruit tissues was restricted at the pedicel and seed coat, suggesting a bottleneck in the export of Zn from the mother plant to filial tissues. Our results provide direct visual evidence for in-situ Zn distribution within the reproductive tissues of a deciduous tree species.


Assuntos
Prunus dulcis/crescimento & desenvolvimento , Prunus dulcis/metabolismo , Zinco/metabolismo , Transporte Biológico , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Imagem Molecular , Espectrometria por Raios X/métodos , Zinco/análise
2.
Proc Natl Acad Sci U S A ; 115(8): 1825-1830, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29437956

RESUMO

Spatial patterning of periodic dynamics is a dramatic and ubiquitous ecological phenomenon arising in systems ranging from diseases to plants to mammals. The degree to which spatial correlations in cyclic dynamics are the result of endogenous factors related to local dynamics vs. exogenous forcing has been one of the central questions in ecology for nearly a century. With the goal of obtaining a robust explanation for correlations over space and time in dynamics that would apply to many systems, we base our analysis on the Ising model of statistical physics, which provides a fundamental mechanism of spatial patterning. We show, using 5 y of data on over 6,500 trees in a pistachio orchard, that annual nut production, in different years, exhibits both large-scale synchrony and self-similar, power-law decaying correlations consistent with the Ising model near criticality. Our approach demonstrates the possibility that short-range interactions can lead to long-range correlations over space and time of cyclic dynamics even in the presence of large environmental variability. We propose that root grafting could be the common mechanism leading to positive short-range interactions that explains the ubiquity of masting, correlated seed production over space through time, by trees.


Assuntos
Agricultura/métodos , Modelos Biológicos , Pistacia/fisiologia , Raízes de Plantas , Sementes
3.
Plant Cell Environ ; 42(12): 3167-3181, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31325325

RESUMO

Apple trees are extensively cultivated worldwide but are often affected by zinc (Zn) deficiency. Limited knowledge regarding Zn remobilization within fruit crops has hampered the development of efficient strategies for providing adequate amounts of Zn. In the present study, Zn distribution and remobilization were compared among apple trees cultivated under different Zn conditions. Without Zn application, plants showed visible symptoms of Zn deficiency at the shoot tips after 1 year but appeared to grow normally during the first 6 months (early stage of Zn deficiency). Compared with apple plants under sufficient Zn treatment, plants suffering from early-stage Zn deficiency showed preferential Zn distribution to young leaves and higher Zn levels in phloem, demonstrating that hidden Zn deficiency triggers a highly efficient remobilization of Zn in this species. The in vivo Zn-nicotianamine complex in phloem tissues, combined with the significant enhanced expression of MdNAS3 and MdYSL6, suggested a positive role for nicotianamine in the phloem remobilization of Zn. These results strongly suggest that a proportion of Zn in the old leaves of apple trees can be efficiently remobilized by phloem transport to the shoot tips, partially in the form of Zn-nicotianamine, thus protecting apple trees against the early stages of Zn deficiency.


Assuntos
Malus/fisiologia , Floema/metabolismo , Árvores/fisiologia , Zinco/deficiência , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/crescimento & desenvolvimento , Modelos Biológicos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Árvores/crescimento & desenvolvimento
4.
J Exp Bot ; 68(9): 2387-2398, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407073

RESUMO

Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.


Assuntos
Cádmio/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Sedum/metabolismo , Transporte Biológico , Microespectrofotometria , Células Vegetais/metabolismo , Espectrometria por Raios X
5.
Proc Natl Acad Sci U S A ; 111(8): 3152-7, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24569807

RESUMO

Elicitation of broadly neutralizing antibodies is essential for the development of a protective vaccine against HIV-1. However, the native HIV-1 envelope adopts a protected conformation that conceals highly conserved sites of vulnerability from antibody recognition. Although high-definition structures of the monomeric core of the envelope glycoprotein subunit gp120 and, more recently, of a stabilized soluble gp140 trimer have been solved, fundamental aspects related to the conformation and function of the native envelope remain unresolved. Here, we show that the conserved central region of the second variable loop (V2) of gp120 contains sulfated tyrosines (Tys173 and Tys177) that in the CD4-unbound prefusion state mediate intramolecular interaction between V2 and the conserved base of the third variable loop (V3), functionally mimicking sulfated tyrosines in CCR5 and anti-coreceptor-binding-site antibodies such as 412d. Recombinant gp120 expressed in continuous cell lines displays low constitutive levels of V2 tyrosine sulfation, which can be enhanced markedly by overexpression of the tyrosyl sulfotransferase TPST2. In contrast, virion-associated gp120 produced by primary CD4(+) T cells is inherently highly sulfated. Consistent with a functional role of the V2 sulfotyrosines, enhancement of tyrosine sulfation decreased binding and neutralization of HIV-1 BaL by monomeric soluble CD4, 412d, and anti-V3 antibodies and increased recognition by the trimer-preferring antibodies PG9, PG16, CH01, and PGT145. Conversely, inhibition of tyrosine sulfation increased sensitivity to soluble CD4, 412d, and anti-V3 antibodies and diminished recognition by trimer-preferring antibodies. These results identify the sulfotyrosine-mediated V2-V3 interaction as a critical constraint that stabilizes the native HIV-1 envelope trimer and modulates its sensitivity to neutralization.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/imunologia , Conformação Proteica , Tirosina/análogos & derivados , Western Blotting , Citometria de Fluxo , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Humanos , Testes de Neutralização , Ressonância de Plasmônio de Superfície , Tirosina/metabolismo
6.
J Environ Qual ; 46(3): 649-658, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28724089

RESUMO

Organic matter amendments supply crop nutrients and enhance soil health, yet information specific to orchards is lacking. A survey was conducted to analyze use of these materials by California almond [ (Mill.) D.A. Webb] growers. Significant differences were observed for benefits, concerns, and accessibility to manure and green waste sources and between users and nonusers. Use patterns were significantly influenced by heavy and light users, farm size, and geographic region. Enhanced soil biology was the main benefit attributed to organic matter amendments by both users and nonusers. Nonusers showed greater concern for food safety compared to users, and all growers reported greater concern for food safety from manure. The greatest adoption of organic matter amendments occurred on small farms (≤170 ha) located in the north San Joaquin Valley in California. Greater accessibility to manure correlated with presence of dairy farms. Poorer accessibility ratings by nonusers suggest access is a barrier to adoption, as opposed to nonusers having an undesirable view of the practice. Common management included applying organic matter amendments during tree dormancy from manure sources in composted forms with no-till. Heavy users on small farms exhibited the greatest year-to-year consistency and were more flexible with selection of sources and diverse in application methods. Large farms (>170 ha) were less likely to use organic matter amendments every year and less likely to apply them on all their farm area. This study identifies a number of strategies to fill knowledge gaps, increase practice awareness, and overcome barriers to adoption.


Assuntos
Agricultura , Esterco , Solo/química , California , Frutas , Poluentes do Solo
7.
Proc Natl Acad Sci U S A ; 110(28): 11505-10, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23803857

RESUMO

The natural killer (NK) gene complex (NKC) encodes numerous C-type lectin-like receptors that govern the activity of NK cells. Although some of these receptors (Ly49s, NKG2D, CD94/NKG2A) recognize MHC or MHC-like molecules, others (Nkrp1, NKRP1A, NKp80, NKp65) instead bind C-type lectin-like ligands to which they are genetically linked in the NKC. To understand the basis for this recognition, we determined the structure of human NKp65, an activating receptor implicated in the immunosurveillance of skin, bound to its NKC-encoded ligand keratinocyte-associated C-type lectin (KACL). Whereas KACL forms a homodimer resembling other C-type lectin-like dimers, NKp65 is monomeric. The binding mode in the NKp65-KACL complex, in which a monomeric receptor engages a dimeric ligand, is completely distinct from those used by Ly49s, NKG2D, or CD94/NKG2A. The structure explains the exceptionally high affinity of the NKp65-KACL interaction compared with other cell-cell interaction pairs (KD = 6.7 × 10(-10) M), which may compensate for the monomeric nature of NKp65 to achieve cell activation. This previously unreported structure of an NKC-encoded receptor-ligand complex, coupled with mutational analysis of the interface, establishes a docking template that is directly applicable to other genetically linked pairs in the NKC, including Nkrp1-Clr, NKRP1A-LLT1, and NKp80-AICL.


Assuntos
Queratinócitos/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Sequência de Aminoácidos , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Receptores Semelhantes a Lectina de Células NK/química , Receptores Semelhantes a Lectina de Células NK/genética , Homologia de Sequência de Aminoácidos
9.
Int J Biometeorol ; 59(6): 707-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25119825

RESUMO

Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond (Prunus dulcis), pistachio (Pistacia vera), and walnut (Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.


Assuntos
Aclimatação/fisiologia , Clima Frio , Temperatura Baixa , Produtos Agrícolas/crescimento & desenvolvimento , Nozes/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Produtos Agrícolas/classificação , Nozes/classificação , Brotos de Planta/classificação , Especificidade da Espécie
10.
J Exp Bot ; 65(4): 953-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24420564

RESUMO

Huanglongbing (HLB) is a highly destructive, fast-spreading disease of citrus, causing substantial economic losses to the citrus industry worldwide. Nutrient levels and their cellular distribution patterns in stems and leaves of grapefruit were analysed after graft-inoculation with lemon scions containing 'Candidatus Liberibacter asiaticus' (Las), the heat-tolerant Asian type of the HLB bacterium. After 12 months, affected plants showed typical HLB symptoms and significantly reduced Zn concentrations in leaves. Micro-XRF imaging of Zn and other nutrients showed that preferential localization of Zn to phloem tissues was observed in the stems and leaves collected from healthy grapefruit plants, but was absent from HLB-affected samples. Quantitative analysis by using standard references revealed that Zn concentration in the phloem of veins in healthy leaves was more than 10 times higher than that in HLB-affected leaves. No significant variation was observed in the distribution patterns of other elements such as Ca in stems and leaves of grapefruit plants with or without graft-inoculation of infected lemon scions. These results suggest that reduced phloem transport of Zn is an important factor contributing to HLB-induced Zn deficiency in grapefruit. Our report provides the first in situ, cellular level visualization of elemental variations within the tissues of HLB-affected citrus.


Assuntos
Citrus paradisi/citologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Espectrometria por Raios X/métodos , Zinco/metabolismo , Transporte Biológico , Citrus paradisi/metabolismo , Citrus paradisi/microbiologia , Minerais/análise , Minerais/metabolismo , Floema/citologia , Floema/metabolismo , Floema/microbiologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Caules de Planta/citologia , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Espectrofotometria Atômica , Síncrotrons , Zinco/análise
11.
New Phytol ; 198(3): 721-731, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23421478

RESUMO

Sedum alfredii is one of a few species known to hyperaccumulate zinc (Zn) and cadmium (Cd). Xylem transport and phloem remobilization of Zn in hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of S. alfredii were compared. Micro-X-ray fluorescence (µ-XRF) images of Zn in the roots of the two S. alfredii populations suggested an efficient xylem loading of Zn in HP S. alfredii, confirmed by the seven-fold higher Zn concentrations detected in the xylem sap collected from HP, when compared with NHP, populations. Zn was predominantly transported as aqueous Zn (> 55.9%), with the remaining proportion (36.7-42.3%) associated with the predominant organic acid, citric acid, in the xylem sap of HP S. alfredii. The stable isotope (68)Zn was used to trace Zn remobilization from mature leaves to new growing leaves for both populations. Remobilization of (68)Zn was seven-fold higher in HP than in NHP S. alfredii. Subsequent analysis by µ-XRF, combined with LA-ICPMS (laser ablation-inductively coupled plasma mass spectrometry), confirmed the enhanced ability of HP S. alfredii to remobilize Zn and to preferentially distribute the metal to mesophyll cells surrounding phloem in the new leaves. The results suggest that Zn hyperaccumulation by HP S. alfredii is largely associated with enhanced xylem transport and phloem remobilization of the metal. To our knowledge, this report is the first to reveal enhanced remobilization of metal by phloem transport in hyperaccumulators.


Assuntos
Floema/metabolismo , Sedum/metabolismo , Xilema/metabolismo , Zinco/farmacocinética , Transporte Biológico , Ecótipo , Espectrometria de Massas/métodos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Espectrometria por Raios X/métodos , Zinco/metabolismo , Isótopos de Zinco
12.
Anal Biochem ; 440(1): 81-95, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23711724

RESUMO

Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard.


Assuntos
Calibragem/normas , Soroalbumina Bovina/análise , Ultracentrifugação/métodos , Área Sob a Curva , Reprodutibilidade dos Testes , Temperatura , Tempo , Ultracentrifugação/instrumentação , Ultracentrifugação/normas
13.
Front Plant Sci ; 14: 1057733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089640

RESUMO

Tracking plant water status is a critical step towards the adaptive precision irrigation management of processing tomatoes, one of the most important specialty crops in California. The photochemical reflectance index (PRI) from proximal sensors and the high-resolution unmanned aerial vehicle (UAV) imagery provide an opportunity to monitor the crop water status efficiently. Based on data from an experimental tomato field with intensive aerial and plant-based measurements, we developed random forest machine learning regression models to estimate tomato stem water potential (ψ stem), (using observations from proximal sensors and 12-band UAV imagery, respectively, along with weather data. The proximal sensor-based model estimation agreed well with the plant ψ stem with R 2 of 0.74 and mean absolute error (MAE) of 0.63 bars. The model included PRI, normalized difference vegetation index, vapor pressure deficit, and air temperature and tracked well with the seasonal dynamics of ψ stem across different plots. A separate model, built with multiple vegetation indices (VIs) from UAV imagery and weather variables, had an R 2 of 0.81 and MAE of 0.67 bars. The plant-level ψ stem maps generated from UAV imagery closely represented the water status differences of plots under different irrigation treatments and also tracked well the temporal change among flights. PRI was found to be the most important VI in both the proximal sensor- and the UAV-based models, providing critical information on tomato plant water status. This study demonstrated that machine learning models can accurately estimate the water status by integrating PRI, other VIs, and weather data, and thus facilitate data-driven irrigation management for processing tomatoes.

14.
Front Plant Sci ; 14: 1240442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810399

RESUMO

Pistachio (Pistacia vera L.), an economically and nutritionally important tree crop, relies on winter chill for bud endodormancy break and subsequent blooming and nut production. However, insufficient winter chill poses an increasing challenge in pistachio growing regions. To gain a better understanding of the physiological and biochemical responses of endodormant pistachio buds to chilling accumulation, we investigated the global gene expression changes in flower buds of pistachio cv. Kerman that were cultivated at three different orchard locations and exposed to increasing durations of winter chill. The expression of genes encoding ß-1,3-glucanase and ß-amylase, enzymes responsible for breaking down callose (ß-1,3-glucan) and starch (α-1,4-glucan), respectively, increased during the endodormancy break of pistachio buds. This result suggested that the breakdown of callose obstructing stomata as well as the release of glucose from starch enables symplasmic trafficking and provides energy for bud endodormancy break and growth. Interestingly, as chilling accumulation increased, there was a decrease in the expression of nine-cis-epoxycarotenoid dioxygenase (NCED), encoding an enzyme that uses carotenoids as substrates and catalyzes the rate-limiting step in abscisic acid (ABA) biosynthesis. The decrease in NCED expression suggests ABA biosynthesis is suppressed, thus reducing inhibition of endodormancy break. The higher levels of carotenoid precursors and a decrease in ABA content in buds undergoing endodormancy break supports this suggestion. Collectively, the temporal transcriptome and biochemical analyses revealed that the degradation of structural (callose) and non-structural (starch) carbohydrates, along with the attenuation of ABA biosynthesis, are critical processes driving endodormancy break in pistachio buds.

15.
Front Plant Sci ; 14: 1070699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875622

RESUMO

Introduction: Estimating and understanding the yield variability within an individual field is critical for precision agriculture resource management of high value tree crops. Recent advancements in sensor technologies and machine learning make it possible to monitor orchards at very high spatial resolution and estimate yield at individual tree level. Methods: This study evaluates the potential of utilizing deep learning methods to predict tree-level almond yield with multi-spectral imagery. We focused on an almond orchard with the 'Independence' cultivar in California, where individual tree harvesting and yield monitoring was conducted for ~2,000 trees and summer aerial imagery at 30cm was acquired for four spectral bands in 2021. We developed a Convolutional Neural Network (CNN) model with a spatial attention module to take the multi-spectral reflectance imagery directly for almond fresh weight estimation at the tree level. Results: The deep learning model was shown to predict the tree level yield very well, with a R2 of 0.96 (±0.002) and Normalized Root Mean Square Error (NRMSE) of 6.6% (±0.2%), based on 5-fold cross validation. The CNN estimation captured well the patterns of yield variation between orchard rows, along the transects, and from tree to tree, when compared to the harvest data. The reflectance at the red edge band was found to play the most important role in the CNN yield estimation. Discussion: This study demonstrates the significant improvement of deep learning over traditional linear regression and machine learning methods for accurate and robust tree level yield estimation, highlighting the potential for data-driven site-specific resource management to ensure agriculture sustainability.

16.
Foods ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36981141

RESUMO

Since soybean is widely cultivated around the world and has a high protein content, it is a great nutritional vehicle for increasing the dietary uptake of selenium (Se). Several studies have evaluated biofortification with Se through fertilizer application in several crops. However, it is not clear how each method and source affect the total Se content or Se species in soybean grains. This work aimed to assess the total Se content and Se speciation in Se-enriched soybean grains produced under different Se application methods in the field. The treatments consisted of Se application (soil or foliar), using organic or inorganic Se sources at 10 g ha-1 or 80 g ha-1, in two genotypes. The results showed that all treatments with inorganic Se (soil and foliar) increased the Se content in grains compared with the control. More than 80% of the total Se in grains was present as selenomethionine (SeMet), and the speciation was affected by the Se source and the method of application. The treatments using inorganic Se, applied via soil or foliar, produced the highest content of Se as SeMet in soybean grains. Finally, we propose that the preservation of the Se species in products derived from soybean grains be evaluated as the following step.

17.
J Hazard Mater ; 448: 130813, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706487

RESUMO

This review gathered and analyzed data about (i) the Cd-induced impacts on seed germination and seedling vigor, and (ii) the use of different priming agents to mitigate Cd-induced impacts on the early plant development. Critical evaluation of the obtained data revealed intriguing results. First, seeds of diverse species can endure exposures to Cd. Such endurance is exhibited as maintenance of or even improvement in the seed germination and vigor (up to 15% and 70%, respectively). Second, the main factors influencing seed tolerance to Cd toxicity are related to temporal variations in anatomical, physiological, and/or biochemical features. Third, Cd can trigger diverse transgenerational effects on plants by shaping seed endophytes, by modulating seed provisioning with resources and regulatory elements, and/or by altering seed (epi)genomics. Fourth, different chemical, biological and physical priming agents can mitigate Cd-induced impacts on seeds, sometimes enhancing their performance over the control (reference) values. Overall, this review shows that the impacts of Cd on seed germination and vigor encompass not only negative outcomes but also neutral and positive ones, depending upon the Cd dose, media properties, plant species and genotypes, plant developmental stage and organ, and management approaches. Increasing our understanding of plant tolerance mechanisms against the growing background Cd pollution is relevant to support breeding programs, agricultural practices, and health-environmental policies.


Assuntos
Germinação , Plântula , Cádmio/toxicidade , Sementes
18.
Small ; 8(14): 2277-86, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22517616

RESUMO

Gold nanoparticles (AuNPs) with core sizes below 2 nm and compact ligand shells constitute versatile platforms for the development of novel reagents in nanomedicine. Due to their ultrasmall size, these AuNPs are especially attractive in applications requiring delivery to crowded intracellular spaces in the cytosol and nucleus. For eventual use in vivo, ultrasmall AuNPs should ideally be monodisperse, since small variations in size may affect how they interact with cells and how they behave in the body. Here we report the synthesis of ultrasmall, uniform 144-atom AuNPs protected by p-mercaptobenzoic acid followed by ligand exchange with glutathione (GSH). Quantitative scanning transmission electron microscopy (STEM) reveals that the resulting GSH-coated nanoparticles (Au(GSH)) have a uniform mass distribution with cores that contain 134 gold atoms on average. Particle size dispersity is analyzed by analytical ultracentrifugation, giving a narrow distribution of apparent hydrodynamic diameter of 4.0 ± 0.6 nm. To evaluate the nanoparticles' intracellular fate, the cell-penetrating peptide TAT is attached noncovalently to Au(GSH), which is confirmed by fluorescence quenching and isothermal titration calorimetry. HeLa cells are then incubated with both Au(GSH) and the Au(GSH)-TAT complex, and imaged without silver enhancement of the AuNPs in unstained thin sections by STEM. This imaging approach enables unbiased detection and quantification of individual ultrasmall nanoparticles and aggregates in the cytoplasm and nucleus of the cells.


Assuntos
Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Glutationa/metabolismo , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Tamanho da Partícula
19.
Methods ; 54(1): 16-30, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21315155

RESUMO

Sedimentation velocity (SV) experiments of heterogeneous interacting systems exhibit characteristic boundary structures that can usually be very easily recognized and quantified. For slowly interacting systems, the boundaries represent concentrations of macromolecular species sedimenting at different rates, and they can be interpreted directly with population models based solely on the mass action law. For fast reactions, migration and chemical reactions are coupled, and different, but equally easily discernable boundary structures appear. However, these features have not been commonly utilized for data analysis, for the lack of an intuitive and computationally simple model. The recently introduced effective particle theory (EPT) provides a suitable framework. Here, we review the motivation and theoretical basis of EPT, and explore practical aspects for its application. We introduce an EPT-based design tool for SV experiments of heterogeneous interactions in the software SEDPHAT. As a practical tool for the first step of data analysis, we describe how the boundary resolution of the sedimentation coefficient distribution c(s) can be further improved with a Bayesian adjustment of maximum entropy regularization to the case of heterogeneous interactions between molecules that have been previously studied separately. This can facilitate extracting the characteristic boundary features by integration of c(s). In a second step, these are assembled into isotherms as a function of total loading concentrations and fitted with EPT. Methods for addressing concentration errors in isotherms are discussed. Finally, in an experimental model system of alpha-chymotrypsin interacting with soybean trypsin inhibitor, we show that EPT provides an excellent description of the experimental sedimentation boundary structure of fast interacting systems.


Assuntos
Quimotripsina/química , Proteínas de Soja/química , Inibidores da Tripsina/química , Ultracentrifugação/métodos , Teorema de Bayes , Entropia , Cinética , Modelos Químicos
20.
Front Plant Sci ; 13: 837695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463431

RESUMO

There has been much interest in the incorporation of organic molecules or biostimulants into foliar fertilizers with the rationalization that these compounds will enhance the uptake, or subsequent mobility of the applied nutrient. The objective of this research was to investigate the effects of an inositol-based plant stimulant on the mobility and accumulation of foliar-applied zinc (Zn) in wheat plants (Triticum aestivum L.). High-resolution elemental imaging with micro-X-ray fluorescence (µ-XRF) was utilized to examine Zn distribution within the vascular bundle of the leaf and whole grains. The inclusion of myo-inositol with Zinc sulfate, significantly increased Zn concentration in shoots in contrast to untreated controls and Zn sulfate applied alone. Foliar Zn treated plants increased Zn in grains by 5-25% with myo-inositol plus Zn treated plants significantly increasing grain Zn concentration compared to both Zn treated and non-treated controls. XRF imaging revealed Zn enrichment in the bran layer and germ, with a very low Zn concentration present in the endosperm. Plants treated with Zn plus myo-inositol showed an enhanced and uniform distribution of Zn throughout the bran layer and germ with an increased concentration in the endosperm. While our data suggest that foliar application of myo-inositol in combination with Zn may be a promising strategy to increase the absorption and mobility of Zn in the plant tissue and subsequently to enhance Zn accumulation in grains, further research is needed to clarify the mechanisms by which myo-inositol affects plant metabolism and nutrient mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA