Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(8): e3001723, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944064

RESUMO

The function of the majority of genes in the human and mouse genomes is unknown. Investigating and illuminating this dark genome is a major challenge for the biomedical sciences. The International Mouse Phenotyping Consortium (IMPC) is addressing this through the generation and broad-based phenotyping of a knockout (KO) mouse line for every protein-coding gene, producing a multidimensional data set that underlies a genome-wide annotation map from genes to phenotypes. Here, we develop a multivariate (MV) statistical approach and apply it to IMPC data comprising 148 phenotypes measured across 4,548 KO lines. There are 4,256 (1.4% of 302,997 observed data measurements) hits called by the univariate (UV) model analysing each phenotype separately, compared to 31,843 (10.5%) hits in the observed data results of the MV model, corresponding to an estimated 7.5-fold increase in power of the MV model relative to the UV model. One key property of the data set is its 55.0% rate of missingness, resulting from quality control filters and incomplete measurement of some KO lines. This raises the question of whether it is possible to infer perturbations at phenotype-gene pairs at which data are not available, i.e., to infer some in vivo effects using statistical analysis rather than experimentation. We demonstrate that, even at missing phenotypes, the MV model can detect perturbations with power comparable to the single-phenotype analysis, thereby filling in the complete gene-phenotype map with good sensitivity. A factor analysis of the MV model's fitted covariance structure identifies 20 clusters of phenotypes, with each cluster tending to be perturbed collectively. These factors cumulatively explain 75% of the KO-induced variation in the data and facilitate biological interpretation of perturbations. We also demonstrate that the MV approach strengthens the correspondence between IMPC phenotypes and existing gene annotation databases. Analysis of a subset of KO lines measured in replicate across multiple laboratories confirms that the MV model increases power with high replicability.


Assuntos
Genoma , Mamíferos , Animais , Bases de Dados Factuais , Genoma/genética , Humanos , Mamíferos/genética , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Fenótipo
2.
PLoS Genet ; 18(1): e1009937, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100259

RESUMO

Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.


Assuntos
Caderinas/genética , Células Ciliadas Auditivas Internas/fisiologia , Audição/genética , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/genética , Animais , Mutação com Perda de Função , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
3.
Development ; 148(18)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33574040

RESUMO

Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.


Assuntos
Embrião de Mamíferos/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Feminino , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/fisiologia , Fenótipo , Software
4.
Nat Rev Genet ; 19(6): 357-370, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626206

RESUMO

We are entering a new era of mouse phenomics, driven by large-scale and economical generation of mouse mutants coupled with increasingly sophisticated and comprehensive phenotyping. These studies are generating large, multidimensional gene-phenotype data sets, which are shedding new light on the mammalian genome landscape and revealing many hitherto unknown features of mammalian gene function. Moreover, these phenome resources provide a wealth of disease models and can be integrated with human genomics data as a powerful approach for the interpretation of human genetic variation and its relationship to disease. In the future, the development of novel phenotyping platforms allied to improved computational approaches, including machine learning, for the analysis of phenotype data will continue to enhance our ability to develop a comprehensive and powerful model of mammalian gene-phenotype space.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma , Genômica/métodos , Animais , Humanos , Camundongos
5.
Nature ; 563(7733): 696-700, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464345

RESUMO

The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma/genética , Animais , Sequência de Bases , Biomarcadores/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
BMC Biol ; 21(1): 22, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737727

RESUMO

BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.


Assuntos
Anoftalmia , Coloboma , Anormalidades do Olho , Microftalmia , Humanos , Camundongos , Animais , Anormalidades do Olho/genética , Anoftalmia/genética , Microftalmia/genética , Coloboma/genética , Camundongos Knockout , Desenvolvimento Embrionário/genética , Fenótipo , Olho , Mamíferos
7.
Hum Mol Genet ; 30(R2): R274-R284, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089057

RESUMO

The mouse is the pre-eminent model organism for studies of mammalian gene function and has provided an extraordinarily rich range of insights into basic genetic mechanisms and biological systems. Over several decades, the characterization of mouse mutants has illuminated the relationship between gene and phenotype, providing transformational insights into the genetic bases of disease. However, if we are to deliver the promise of genomic and precision medicine, we must develop a comprehensive catalogue of mammalian gene function that uncovers the dark genome and elucidates pleiotropy. Advances in large-scale mouse mutagenesis programmes allied to high-throughput mouse phenomics are now addressing this challenge and systematically revealing novel gene function and multi-morbidities. Alongside the development of these pan-genomic mutational resources, mouse genetics is employing a range of diversity resources to delineate gene-gene and gene-environment interactions and to explore genetic context. Critically, mouse genetics is a powerful tool for assessing the functional impact of human genetic variation and determining the causal relationship between variant and disease. Together these approaches provide unique opportunities to dissect in vivo mechanisms and systems to understand pathophysiology and disease. Moreover, the provision and utility of mouse models of disease has flourished and engages cumulatively at numerous points across the translational spectrum from basic mechanistic studies to pre-clinical studies, target discovery and therapeutic development.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genoma , Genômica , Alelos , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Engenharia Genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mutagênese , Mutação , Fenômica/métodos , Fenótipo , Medicina de Precisão , Transdução de Sinais , Pesquisa Translacional Biomédica
8.
Colorectal Dis ; 25(5): 995-1001, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727730

RESUMO

AIM: Fistula-in-ano is a common condition that is potentially difficult to treat. In recent years 'sphincter-sparing' procedures have increased in popularity due to the lower rates of reported complications, such as incontinence. One such treatment is the fistula plug, which has seen varied success compared with other techniques. There are currently several plugs on the market and it is possible that difference in outcomes could be linked to the type of plug used. The aim of this study was to compare healing and complication rates between two fistula plugs in a single tertiary referral centre in the UK. METHOD: We conducted a single-centre retrospective analysis of all patients over the age of 18 years who underwent elective fistula plug insertion, with two different fistula plugs over a 13-year period. RESULTS: A total of 113 patients underwent fistula plug insertion (plug A n = 90; plug B n = 23). Plug B had been on the market for the final 4 years of the study period, hence the differing patient numbers. There was no difference in patient demographics, fistula type or aetiology of the fistula between the two plugs. Plug B had a significantly higher fistula healing rate compared with plug A (56.5% vs. 12.2%; p < 0.005). A quarter of all patients experienced a complication, 93% being those who had fistula plug A inserted. The most common complication was extrusion of the plug within 72 h of insertion. CONCLUSION: This study demonstrated significantly different outcomes according to the type of fistula plug used. Whilst current randomized controlled trials have not found a significant difference in healing rates when comparing one type of fistula plug to other treatment modalities, this study suggests that plug type may influence efficacy.


Assuntos
Fístula Retal , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Fístula Retal/cirurgia , Cicatrização , Canal Anal
9.
Colorectal Dis ; 25(11): 2243-2256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37684725

RESUMO

AIM: The aim was to determine whether specialist-led habit training using Habit Training with Biofeedback (HTBF) is more effective than specialist-led habit training alone (HT) for chronic constipation and whether outcomes of interventions are improved by stratification to HTBF or HT based on diagnosis (functional defaecation disorder vs. no functional defaecation disorder) by radio-physiological investigations (INVEST). METHOD: This was a parallel three-arm randomized single-blinded controlled trial, permitting two randomized comparisons: HTBF versus HT alone; INVEST- versus no-INVEST-guided intervention. The inclusion criteria were age 18-70 years; attending specialist hospitals in England; self-reported constipation for >6 months; refractory to basic treatment. The main exclusions were secondary constipation and previous experience of the trial interventions. The primary outcome was the mean change in Patient Assessment of Constipation Quality of Life score at 6 months on intention to treat. The secondary outcomes were validated disease-specific and psychological questionnaires and cost-effectiveness (based on EQ-5D-5L). RESULTS: In all, 182 patients were randomized 3:3:2 (target 384): HT n = 68; HTBF n = 68; INVEST-guided treatment n = 46. All interventions had similar reductions (improvement) in the primary outcome at 6 months (approximately -0.8 points of a 4-point scale) with no statistically significant difference between HT and HTBF (-0.03 points; 95% CI -0.33 to 0.27; P = 0.85) or INVEST versus no-INVEST (0.22; -0.11 to 0.55; P = 0.19). Secondary outcomes showed a benefit for all interventions with no evidence of greater cost-effectiveness of HTBF or INVEST compared with HT. CONCLUSION: The results of the study at 6 months were inconclusive. However, with the caveat of under-recruitment and further attrition at 6 months, a simple, cheaper approach to intervention may be as clinically effective and more cost-effective than more complex and invasive approaches.


Assuntos
Constipação Intestinal , Qualidade de Vida , Humanos , Adulto , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Constipação Intestinal/etiologia , Constipação Intestinal/terapia , Biorretroalimentação Psicológica/métodos , Inglaterra , Hábitos , Análise Custo-Benefício
10.
PLoS Genet ; 16(1): e1008577, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929527

RESUMO

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.


Assuntos
Ritmo Circadiano/genética , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Receptores de Ocitocina/genética , Proteínas Repressoras/genética , Serina Endopeptidases/genética , Proteínas de Ligação a Telômeros/genética , Complexos Ubiquitina-Proteína Ligase/genética
11.
J Nematol ; 55(1): 20230001, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36880012

RESUMO

Meloidogyne incognita- and Rotylenchulus reniformis-resistant new cotton cultivars have recently become available, giving growers a new option in nematode management. The objectives of this study were: (i) to determine the yield potential of the new cultivars PHY 360 W3FE (M. incognita-resistant) and PHY 332 W3FE (R. reniformis-resistant) in nematode-infested fields and (ii) to evaluate the effects of combining the nematicides Reklemel (fluazaindolizine), Vydate C-LV (oxamyl), and the seed treatment BIOST Nematicide 100 (heat killed Burkholderia rinojenses and its non-living spent fermentation media) with resistant cotton cultivars on nematode population levels and lint yield. Field experiments in 2020 and 2021 indicated M. incognita population levels were 73% lower on PHY 360 W3FE (R) and 80% lower for R. reniformis on the PHY 332 W3FE (R) at 40 days after planting. Nematode eggs per gram of root were further reduced an average of 86% after the addition of Reklemel and Vydate C-LV when averaging both cultivars over the two years. Tests with BIOST Nematicide 100 + Reklemel + Vydate C-LV (0.56 + 2.5 L/ha) in both M. incognita and R. reniformis fields produced higher lint yields. Overall, planting PHY 360 W3FE (R) and PHY 332 W3FE (R) improved yields an average of 364 kg/ha while limiting nematode population increases. The addition of the nematicides further increased yields 152 kg/ha of the nematode-resistant cultivars.

12.
Mamm Genome ; 33(1): 120-122, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34328547

RESUMO

Improving reproducibility and replicability in preclinical research is a widely discussed and pertinent topic, especially regarding ethical responsibility in animal research. INFRAFRONTIER, the European Research Infrastructure for the generation, phenotyping, archiving, and distribution of model mammalian genomes, is addressing this issue by developing internal quality principles for its different service areas, that provides a quality framework for its operational activities. This article introduces the INFRAFRONTIER Quality Principles in Systemic Phenotyping of genetically altered mouse models. A total of 11 key principles are included, ranging from general requirements for compliance with guidelines on animal testing, to the need for well-trained personnel and more specific standards such as the exchange of reference lines. Recently established requirements such as the provision of FAIR (Findable, Accessible, Interoperable, Reusable) data are also addressed. For each quality principle, we have outlined the specific context, requirements, further recommendations, and key references.


Assuntos
Genoma , Mamíferos , Animais , Modelos Animais de Doenças , Camundongos , Reprodutibilidade dos Testes
13.
J Physiol ; 599(1): 269-287, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179774

RESUMO

KEY POINTS: Age-related hearing loss is a progressive hearing loss involving environmental and genetic factors, leading to a decrease in hearing sensitivity, threshold and speech discrimination. We compared age-related changes in inner hair cells (IHCs) between four mouse strains with different levels of progressive hearing loss. The surface area of apical coil IHCs (9-12 kHz cochlear region) decreases by about 30-40% with age. The number of BK channels progressively decreases with age in the IHCs from most mouse strains, but the basolateral membrane current profile remains unchanged. The mechanoelectrical transducer current is smaller in mice harbouring the hypomorphic Cdh23 allele Cdh23ahl (C57BL/6J; C57BL/6NTac), but not in Cdh23-repaired mice (C57BL/6NTacCdh23+ ), indicating that it could contribute to the different progression of hearing loss among mouse strains. The degree of efferent rewiring onto aged IHCs, most likely coming from the lateral olivocochlea fibres, was correlated with hearing loss in the different mouse strains. ABSTRACT: Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of age-related hearing loss. Here, we have investigated the functional characteristics of IHCs from early-onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from late-onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+ ) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9-12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30-40% starting from ∼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres re-form functional axon-somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent post-synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in re-establishing the LOC-IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+ mice, indicating that the MET apparatus directly contributes to the progression of age-related hearing loss.


Assuntos
Células Ciliadas Auditivas Internas , Canais de Potássio Ativados por Cálcio de Condutância Alta , Animais , Caderinas/genética , Caderinas/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
14.
J Physiol ; 599(4): 1173-1198, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33151556

RESUMO

KEY POINTS: Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT: The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.


Assuntos
Surdez , Proteínas de Membrana , Estereocílios , Animais , Surdez/genética , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos
15.
Colorectal Dis ; 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33583109

RESUMO

Colorectal surgeons across the UK currently undertake a large proportion of routine diagnostic and therapeutic colonoscopy in most NHS Trusts [1]. Meanwhile, the new UK General Surgical curriculum now includes an indicative requirement of 200 diagnostic colonoscopies for surgical trainees who have declared a colorectal subspecialty interest (hereafter termed 'colorectal trainees'), indicating the JCST's (Joint Committee on Surgical Training) commitment to colonoscopy training. However, several studies have reported a marked deficiency in colonoscopy training opportunities and accreditation for surgical trainees compared with gastroenterology trainees [2-4].

16.
J Physiol ; 598(19): 4339-4355, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710572

RESUMO

KEY POINTS: Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT: Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.


Assuntos
Cóclea , Células Ciliadas Auditivas Internas , Envelhecimento , Animais , Caderinas , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Sinapses
17.
J Physiol ; 598(18): 3891-3910, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32608086

RESUMO

KEY POINTS: Age-related hearing loss (ARHL) is a very heterogeneous disease, resulting from cellular senescence, genetic predisposition and environmental factors (e.g. noise exposure). Currently, we know very little about age-related changes occurring in the auditory sensory cells, including those associated with the outer hair cells (OHCs). Using different mouse strains, we show that OHCs undergo several morphological and biophysical changes in the ageing cochlea. Ageing OHCs also exhibited the progressive loss of afferent and efferent synapses. We also provide evidence that the size of the mechanoelectrical transducer current is reduced in ageing OHCs, highlighting its possible contribution in cochlear ageing. ABSTRACT: Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9-12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and non-linear capacitance, a readout of prestin-dependent electromotility. Despite these changes, OHCs have a normal Vm and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, good-hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of age-related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing.


Assuntos
Células Ciliadas Auditivas Externas , Emissões Otoacústicas Espontâneas , Animais , Caderinas , Cóclea , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
18.
BMC Genomics ; 21(1): 754, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138777

RESUMO

BACKGROUND: Efforts to elucidate the function of enhancers in vivo are underway but their vast numbers alongside differing enhancer architectures make it difficult to determine their impact on gene activity. By systematically annotating multiple mouse tissues with super- and typical-enhancers, we have explored their relationship with gene function and phenotype. RESULTS: Though super-enhancers drive high total- and tissue-specific expression of their associated genes, we find that typical-enhancers also contribute heavily to the tissue-specific expression landscape on account of their large numbers in the genome. Unexpectedly, we demonstrate that both enhancer types are preferentially associated with relevant 'tissue-type' phenotypes and exhibit no difference in phenotype effect size or pleiotropy. Modelling regulatory data alongside molecular data, we built a predictive model to infer gene-phenotype associations and use this model to predict potentially novel disease-associated genes. CONCLUSION: Overall our findings reveal that differing enhancer architectures have a similar impact on mammalian phenotypes whilst harbouring differing cellular and expression effects. Together, our results systematically characterise enhancers with predicted phenotypic traits endorsing the role for both types of enhancers in human disease and disorders.


Assuntos
Elementos Facilitadores Genéticos , Animais , Elementos Facilitadores Genéticos/genética , Humanos , Camundongos , Fenótipo
19.
Hum Mol Genet ; 27(R2): R130-R135, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726933

RESUMO

Over the past 25 years, human and mouse genetics research together has identified several hundred genes essential for mammalian hearing, leading to a greater understanding of the molecular mechanisms underlying auditory function. However, from the number of still as yet uncloned human deafness loci and the findings of large-scale mouse mutant screens, it is clear we are still far from identifying all of the genes critical for auditory function. In particular, while we have made great progress in understanding the genetic bases of congenital and early-onset hearing loss (HL), we have only just begun to elaborate upon the genetic landscape of age-related HL. With an aging population and a growing literature suggesting links between age-related HL and neuropsychiatric conditions, such as dementia and depression, understanding the genetics and subsequently the molecular mechanisms underlying this very prevalent condition is of paramount importance. Increased knowledge of genes and molecular pathways required for hearing will ultimately provide the foundation upon which novel therapeutic approaches can be built. Here we discuss the current status of deafness genetics research and the ongoing efforts being undertaken for discovery of novel genes essential for hearing.


Assuntos
Doenças Auditivas Centrais/genética , Perda Auditiva/genética , Audição/genética , Animais , Surdez/genética , Modelos Animais de Doenças , Humanos , Camundongos
20.
Hum Mol Genet ; 27(10): 1723-1731, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29509900

RESUMO

Polyglutamine expansions in the huntingtin gene cause Huntington's disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed 'draggen' mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration.


Assuntos
Doença de Huntington/genética , Atrofia Muscular/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Animais , Modelos Animais de Doenças , Treino Aeróbico , Elementos Facilitadores Genéticos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/fisiopatologia , Doença de Huntington/terapia , Camundongos , Atrofia Muscular/fisiopatologia , Atrofia Muscular/terapia , Mutação , Neurônios/patologia , Neurônios/fisiologia , Biogênese de Organelas , Peptídeos/genética , Condicionamento Físico Animal , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA