Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Pharmacol Exp Ther ; 388(2): 367-375, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37918856

RESUMO

Organophosphates cause hyperstimulation of the central nervous system, leading to extended seizures, convulsions, and brain damage. Sarin is a highly toxic organophosphate nerve agent that has been employed in several terrorist attacks. The prolonged toxicity of sarin may be enhanced by the neuroinflammatory response initiated by the inflammasome, caspase involvement, and generation/release of proinflammatory cytokines. Since neurodegeneration and neuroinflammation are prevalent in sarin-exposed animals, we were interested in evaluating the capacity of quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh), a pan caspase inhibitor to attenuate neuroinflammation following sarin exposure. To test this hypothesis, sarin-exposed C57BL/6 mice were treated with Q-VD-OPh or negative control quinolyl-valyl-O-methylglutamyl-[-2,6-difluorophenoxy]-methyl ketone, sacrificed at 2- and 14-day time points, followed by removal of the amygdala and hippocampus. A Bio-Rad 23-Plex cytokine analysis was completed on each tissue. The results suggest that exposure to sarin induced a dramatic increase in interleukin-1ß and 6 other cytokines and a decrease in 2 of the 23 cytokines at 2 days in the amygdala compared with controls. Q-VD-OPh attenuated these changes at the 2-day time point. At 14 days, six of these cytokines were still significantly different from controls. Hippocampus was less affected at both time points. Diazepam, a neuroprotective drug against nerve agents, caused an increase in several cytokines but did not have a synergistic effect with Q-VD-OPh. Treatment of sarin exposure with apoptosis inhibitors appears to be a worthwhile approach for further testing as a comprehensive counteragent against organophosphate exposure. SIGNIFICANCE STATEMENT: A pan inhibitor of caspases (Q-VD-OPh) was proposed as a potential antidote for sarin-induced neuroinflammation by reducing the level of inflammation via inflammasome caspase inhibition. Q-VD-OPh added at 30 minutes post-sarin exposure attenuated the inflammatory response of a number of cytokines and chemokines in the amygdala and hippocampus, two brain regions sensitive to organophosphate exposure. Apoptotic marker reduction at 2 and 14 days further supports further testing of inhibitors of apoptosis as a means to lessen extended organophosphate toxicity in the brain.


Assuntos
Clorometilcetonas de Aminoácidos , Agentes Neurotóxicos , Quinolinas , Sarina , Camundongos , Animais , Sarina/toxicidade , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Doenças Neuroinflamatórias , Inflamassomos , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Encéfalo , Citocinas , Agentes Neurotóxicos/farmacologia , Caspases , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Organofosfatos/farmacologia , Cetonas/efeitos adversos
2.
Clin Sci (Lond) ; 137(21): 1651-1664, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37861075

RESUMO

The System L amino acid transporter, particularly the isoform Large Neutral Amino Acid Transporter Small Subunit 1 (LAT1) encoded by SLC7A5, is believed to mediate the transfer of essential amino acids in the human placenta. Placental System L amino acid transporter expression and activity is decreased in pregnancies complicated by IUGR and increased in fetal overgrowth. However, it remains unknown if changes in the expression of LAT1 are mechanistically linked to System L amino acid transport activity. Here, we combined overexpression approaches with protein analysis and functional studies in cultured primary human trophoblast (PHT) cells to test the hypothesis that SLC7A5 overexpression increases the uptake of essential amino acids and activates mTOR signaling in PHT cells. Overexpression of SLC7A5 resulted in a marked increase in protein expression of LAT1 in the PHT cells microvillous plasma membrane and System L amino acid transporter activity. Moreover, mTOR signaling was activated, and System A amino acid transporter activity increased following SLC7A5 overexpression, suggesting coordination of trophoblast amino transporter expression and activity to ensure balanced nutrient flux to the fetus. This is the first report showing that overexpression of LAT1 is sufficient to increase the uptake of essential amino acids in PHT cells, which activates mTOR, a master regulator of placental function. The decreased placental System L activity in human IUGR and the increased placental activity of this transporter system in some cases of fetal overgrowth may directly contribute to changes in fetal amino acid availability and altered fetal growth in these pregnancy complications.


Assuntos
Diabetes Gestacional , Trofoblastos , Feminino , Humanos , Gravidez , Aminoácidos/metabolismo , Aminoácidos Essenciais/metabolismo , Diabetes Gestacional/metabolismo , Macrossomia Fetal/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Placenta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trofoblastos/metabolismo
3.
Clin Sci (Lond) ; 135(17): 2049-2066, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34406367

RESUMO

Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.


Assuntos
Sistema A de Transporte de Aminoácidos/deficiência , Desenvolvimento Fetal , Retardo do Crescimento Fetal/metabolismo , Placenta/metabolismo , Placentação , Sistema A de Transporte de Aminoácidos/genética , Animais , Estudos de Casos e Controles , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Placenta/fisiopatologia , Gravidez , Estudos Prospectivos , Interferência de RNA
4.
PNAS Nexus ; 3(6): pgae207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894879

RESUMO

Placental System L amino acid transporter activity is decreased in pregnancies complicated by intrauterine growth restriction (IUGR) and increased in fetal overgrowth. However, it is unknown if changes in the expression/activity of placental Large Neutral Amino Acid Transporter Small Subunit 1 (Slc7a5/LAT1) are mechanistically linked to placental function and fetal growth. We hypothesized that trophoblast-specific Slc7a5 overexpression increases placental transport of essential amino acids, activates the placental mechanistic target of rapamycin (mTOR) signaling, and promotes fetal growth in mice. Using lentiviral transduction of blastocysts with a Slc7a5 transgene, we achieved trophoblast-specific overexpression of Slc7a5 (Slc7a5 OX) with increased fetal (+27%) and placental weights (+10%). Trophoblast-specific Slc7a5 overexpression increased trophoblast plasma membrane (TPM) LAT1 protein abundance and TPM System L transporter (+53%) and System A transporter activity (+ 21%). Slc7a5 overexpression also increased transplacental transport of leucine (+ 85%) but not of the System A tracer, 14C-methylamino isobutyric acid, in vivo. Trophoblast-specific overexpression of Slc7a5 activated placental mTORC1, as assessed by increased (+44%) phosphorylation of S6 ribosomal protein (Ser 235/236), and mTORC2 as indicated by phosphorylation of PKCα-Tyr-657 (+47%) and Akt-Ser 473 (+96%). This is the first demonstration that placental transport of essential amino acids is mechanistically linked to fetal growth. The decreased placental System L activity in human IUGR and the increased placental activity of this transporter in some cases of fetal overgrowth may directly contribute to the development of these pregnancy complications.

5.
Reprod Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777947

RESUMO

Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.

6.
Cell Physiol Biochem ; 31(2-3): 257-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23466888

RESUMO

BACKGROUND/AIMS: Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss) in human lens epithelial cells [LECs]. METHODS: K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. RESULTS: CET inhibited NKP and NKCC by >90% (IC50 values ~35 and ~15 µM, respectively) without significant KCC activity change, and stimulated K+ loss by ~35% at 10-30 µM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN) was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. CONCLUSION: Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet unrecognized signal transducers in the initial phases of apoptosis. CET action on NKCC1 and K+ channels may involve PKC-regulated mechanisms; however, limited sequence homologies to BH1-like motifs cannot exclude direct effects.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Benzofenantridinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Ouabaína/farmacologia , Fosforilação , Potássio/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rubídio/metabolismo , Alinhamento de Sequência , Simportadores de Cloreto de Sódio-Potássio/química , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Suínos , Trítio/química
7.
Hypertension ; 80(6): 1363-1374, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36987911

RESUMO

BACKGROUND: Placental disorders contribute to pregnancy complications, including preeclampsia and fetal growth restriction (FGR), but debate regarding their specific pathobiology persists. Our objective was to apply transcriptomics with weighted gene correlation network analysis to further clarify the placental dysfunction in these conditions. METHODS: We performed RNA sequencing with weighted gene correlation network analysis using human placental samples (n=30), separated into villous tissue and decidua basalis, and clinically grouped as follows: (1) early-onset preeclampsia (EOPE)+FGR (n=7); (2) normotensive, nonanomalous preterm FGR (n=5); (2) EOPE without FGR (n=8); (4) spontaneous idiopathic preterm birth (n=5) matched for gestational age; and (5) uncomplicated term births (n=5). Our data was compared with RNA sequencing data sets from public databases (GSE114691, GSE148241, and PRJEB30656; n=130 samples). RESULTS: We identified 14 correlated gene modules in our specimens, of which most were significantly correlated with birthweight and maternal blood pressure. Of the 3 network modules consistently predictive of EOPE±FGR across data sets, we prioritized a coexpression gene group enriched for hypoxia-response and metabolic pathways for further investigation. Cluster analysis based on transcripts from this module and the glycolysis/gluconeogenesis metabolic pathway consistently distinguished a subset of EOPE±FGR samples with an expression signature suggesting modified tissue bioenergetics. We demonstrated that the expression ratios of LDHA/LDHB and PDK1/GOT1 could be used as surrogate indices for the larger panels of genes in identifying this subgroup. CONCLUSIONS: We provide novel evidence for a molecular subphenotype consistent with a glycolytic metabolic shift that occurs more frequently but not universally in placental specimens of EOPE±FGR.


Assuntos
Doenças Placentárias , Pré-Eclâmpsia , Nascimento Prematuro , Humanos , Gravidez , Recém-Nascido , Feminino , Placenta/metabolismo , Retardo do Crescimento Fetal , Transcriptoma , Pré-Eclâmpsia/metabolismo , Nascimento Prematuro/metabolismo , Doenças Placentárias/metabolismo
8.
Front Physiol ; 14: 1137058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089425

RESUMO

Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.

9.
Immunohorizons ; 6(6): 334-343, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697477

RESUMO

Cardiac resident macrophages facilitate electrical conduction by interacting with cardiomyocytes via connexin-43 (Cx43) hemichannels. Cx43 is critical for impulse propagation and coordination between muscle contractions. Cardiomyocyte electrophysiology can be altered when coupled with noncardiomyocyte cell types such as M2c tissue-resident macrophages. Using cocultures of murine HL-1 cardiomyocytes and RAW 264.7 macrophages, we examined the hypothesis that cytokine signals, TGF-ß1 and IL-10, upregulate Cx43 expression at points of contact between the two cell types. These cytokine signals maintain the macrophages in an M2c anti-inflammatory phenotype, mimicking cardiac resident macrophages. The electrophysiology of cardiomyocytes was examined using di-8-ANEPPS potentiometric dye, which reflects a change in membrane potential. Greater fluorescence intensity of di-8-ANEPPS occurred in areas where macrophages interacted with cardiomyocytes. Suppressor of cytokine signaling 3 (SOCS3) peptide mimetic downregulated fluorescence of this membrane potentiometric stain. Cx43 expression in cocultures was confirmed by fluorescence microscopy and flow cytometry. Confocal images of these interactions demonstrate the Cx43 hemichannel linkages between the cardiomyocytes and macrophages. These results suggest that TGF-ß1 and IL-10 upregulate Cx43 hemichannels, thus enhancing macrophage-cardiomyocyte coupling, raising the cellular resting membrane potential and leading to a more excitatory cardiomyocyte.


Assuntos
Conexina 43 , Miócitos Cardíacos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Potenciais da Membrana , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
10.
Front Physiol ; 12: 681632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276401

RESUMO

Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.

11.
Sci Rep ; 9(1): 2742, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808910

RESUMO

The placenta is an essential organ that is formed during pregnancy and its proper development is critical for embryonic survival. While several animal models have been shown to exhibit some of the pathological effects present in human preeclampsia, these models often do not represent the physiological aspects that have been identified. Hypoxia-inducible factor 1 alpha (Hif-1α) is a necessary component of the cellular oxygen-sensing machinery and has been implicated as a major regulator of trophoblast differentiation. Elevated levels of Hif-1α in the human placenta have been linked to the development of pregnancy-associated disorders, such as preeclampsia and fetal growth restriction. As oxygen regulation is a critical determinant for placentogenesis, we determined the effects of constitutively active Hif-1α, specifically in trophoblasts, on mouse placental development in vivo. Our research indicates that prolonged expression of trophoblast-specific Hif-1α leads to a significant decrease in fetal birth weight. In addition, we noted significant physiological alterations in placental differentiation that included reduced branching morphogenesis, alterations in maternal and fetal blood spaces, and failure to remodel the maternal spiral arteries. These placental alterations resulted in subsequent maternal hypertension with parturitional resolution and maternal kidney glomeruloendotheliosis with accompanying proteinuria, classic hallmarks of preeclampsia. Our findings identify Hif-1α as a critical molecular mediator of placental development and indicate that prolonged expression of Hif-1α, explicitly in placental trophoblasts causes maternal pathology and establishes a mouse model that significantly recapitulates the physiological and pathophysiological characteristics of preeclampsia with fetal growth restriction.


Assuntos
Retardo do Crescimento Fetal/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Placenta/patologia , Placentação , Pré-Eclâmpsia/patologia , Trofoblastos/metabolismo , Animais , Feminino , Retardo do Crescimento Fetal/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez
12.
Int J Stem Cells ; 11(1): 111-120, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29699384

RESUMO

BACKGROUND: Transforming growth factor beta (TGF-ß) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-ß. However, the signal transduction pathway activated by TGF-ß to induce SM10 progenitor differentiation has yet to be fully investigated. MATERIALS AND METHODS: In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-ß induced differentiation. Activation of the TGF-ß pathway and the ability of TGF-ß to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. RESULTS AND CONCLUSIONS: In this report, we show that three isoforms of TGF-ß have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-ß superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-ß induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation.

13.
Theriogenology ; 107: 115-126, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29145065

RESUMO

The placenta is a complex and essential organ composed largely of fetal-derived cells, including several different trophoblast subtypes that work in unison to support nutrient transport to the fetus during pregnancy. Abnormal placental development can lead to pregnancy-associated disorders that often involve metabolic dysfunction. The scope of dysregulated metabolism during placental development may not be fully representative of the in vivo state in defined culture systems, such as cell lines or isolated primary cells. Thus, assessing metabolic function in intact placental tissue would provide a better assessment of placental metabolism. In this study, we describe a methodology for assaying glycolytic function in structurally-intact mouse placental tissue, ex vivo, without culturing or tissue dissociation, that more closely resembles the in vivo state. Additionally, we present data highlighting sex-dependent differences of two mouse strains (C57BL/6 and ICR) in the pre-hypertrophic (E14.5) and hypertrophic (E18.5) placenta. These data establish a foundation for investigation of metabolism throughout gestation and provides a comprehensive assessment of glycolytic function during placental development.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , Placenta/fisiologia , Animais , Feminino , Desenvolvimento Fetal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Gravidez
14.
Stem Cells Dev ; 26(11): 808-817, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335680

RESUMO

Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Vilosidades Coriônicas/metabolismo , Metabolismo Energético , Técnicas de Silenciamento de Genes , Células-Tronco/citologia , Células-Tronco/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Respiração Celular , Forma Celular , Tamanho Celular , Feminino , Glicólise , Camundongos , Mitocôndrias/metabolismo , Tamanho das Organelas , Gravidez , Prótons
15.
Exp Suppl ; 107: 73-79, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812977

RESUMO

AMPK is important in numerous physiological systems but plays a vital role in embryonic and placental development. The placenta is a unique organ that is the essential lifeline between the mother and baby during pregnancy and gestation. During placental development, oxygen concentrations are very low until cells differentiate to establish the appropriate lineages that take on new functions required for placental and embryonic survival. Balancing the oxygen regulatory environment with the demands for energy and need to maintain metabolism during this process places AMPK at the center of maintaining placental cellular homeostasis as it integrates and responds to numerous complex stimuli. AMPK plays a critical role in sensing metabolic and energy changes. Once activated, it turns on pathways that produce energy and shuts down catabolic processes. AMPK coordinates cell growth, differentiation, and nutrient transport to maintain cell survival. Appropriate regulation of AMPK is essential for normal placental and embryonic development, and its dysregulation may lead to pregnancy-associated disorders such as intrauterine growth restriction, placental insufficiency, or preeclampsia.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Oxigênio/metabolismo , Placenta/enzimologia , Placentação/genética , Células-Tronco/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Retardo do Crescimento Fetal/enzimologia , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica , Humanos , Placenta/citologia , Insuficiência Placentária/enzimologia , Insuficiência Placentária/etiologia , Insuficiência Placentária/genética , Insuficiência Placentária/patologia , Pré-Eclâmpsia/enzimologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Complicações na Gravidez/enzimologia , Complicações na Gravidez/genética , Complicações na Gravidez/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais , Células-Tronco/patologia
16.
Stem Cells Dev ; 25(13): 959-74, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27168216

RESUMO

The placenta is an organ that is formed transiently during pregnancy, and appropriate placental development is necessary for fetal survival and growth. Proper differentiation of the labyrinthine layer of the placenta is especially crucial, as it establishes the fetal-maternal interface that is involved in physiological exchange processes. Although previous studies have indicated the importance of inhibitor of differentiation/inhibitor of DNA binding-2 (Id2) helix-loop-helix transcriptional regulator in mediating cell differentiation, the ability of Id2 to regulate differentiation toward the labyrinthine (transport) lineage of the placenta has yet to be determined. In the current study, we have generated labyrinthine trophoblast progenitor cells with increased (SM10-Id2) or decreased (SM10-Id2-shRNA) Id2 expression and determined the effect on TGF-ß-induced differentiation. Our Id2 overexpression and knockdown analyses indicate that Id2 mediates TGF-ß-induced morphological differentiation of labyrinthine trophoblast cells, as Id2 overexpression prevents differentiation and Id2 knockdown results in differentiation. Thus, our data indicate that Id2 is an important molecular mediator of labyrinthine trophoblast differentiation. An understanding of the regulators of trophoblast progenitor differentiation toward the labyrinthine lineage may offer insights into events governing pregnancy-associated disorders, such as placental insufficiency, fetal growth restriction, and preeclampsia.


Assuntos
Diferenciação Celular , Proteína 2 Inibidora de Diferenciação/metabolismo , Placenta/citologia , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Forma Celular/efeitos dos fármacos , Células Clonais , Regulação para Baixo/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Proteína 2 Inibidora de Diferenciação/genética , Camundongos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
17.
Oncogene ; 21(57): 8776-85, 2002 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-12483531

RESUMO

Mdm2 overexpression confers a growth promoting activity upon cells primarily by downregulating the p53 tumor suppressor protein. Nevertheless, Mdm2 deregulation has also been implicated in inhibiting TGF-beta growth repression in a p53 independent manner. Our goal in this study was to examine whether overexpression of Mdm2 or MdmX, a Mdm2-related protein, could affect Smad-induced transactivation. As downstream signaling elements of the TGF-beta pathway, Smads represent one potential target for Mdm2 and MdmX. Here we show that MdmX but not Mdm2 is capable of inhibiting Smad induced transactivation. Based on deletion mutant analysis, MdmX inhibition of Smad transactivation was independent of the p53 and Mdm2 interaction domains, yet required amino acid residues 128-444. Using TGF-beta sensitive HepG2 cells, MdmX overexpression was shown to inhibit TGF-beta induced Smad transactivation. Additionally, mouse embryo fibroblasts (MEFs) lacking p53 and MdmX showed enhanced Smad transactivation when compared to MEFs lacking either p53 or p53 and Mdm2. Interestingly, the inhibition of Smad transactivation by MdmX could be reversed by p300, a functional co-activator of Smads and a necessary factor for Mdm2 nuclear export and did not result from altered Smad localization. In vitro studies demonstrate that MdmX binds to p300 as well as Smad3 and Smad4. Taken together, these results suggest that inhibition of Smad-induced transactivation by MdmX occurs by altering Smad interaction with its coactivator p300.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Nucleares , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/genética , Ativação Transcricional/fisiologia , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Smad , Transativadores/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Células Tumorais Cultivadas
18.
Stem Cells Dev ; 14(6): 697-711, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16433625

RESUMO

The mammalian placenta consists of different trophoblast cell types that assist in the variety of functions required for the maintenance of pregnancy. In rodents, labyrinthine trophoblasts of the placenta are especially important, because they are capable of differentiating into fused labyrinthine cells, which form the feto-maternal exchange surface. Even though the molecular signals triggering labyrinthine trophoblast differentiation are poorly understood, transforming growth factor-beta (TGF-beta) has been shown to be present in the placental environment and alter trophoblast development. In this study, we investigated the effects of TGF-beta on the differentiation of the labyrinthine trophoblast stem cell lines SM10 and HRP-1. RT-PCR analyses demonstrated that while the molecular expression of labyrinthine-specific lineage markers (Esx1, Tfeb, and Tec) was maintained in TGF-beta-treated SM10 and HRP-1 cells, TGF-beta induced the down-regulation of trophoblast stem cell markers Id2 and Cdx2. In contrast, TGF-beta induced the expression of a marker of differentiated labyrinthine trophoblasts, Gcm1, only in the SM10 cell line. Furthermore, we demonstrated an increased glucose uptake in the TGF-beta-treated SM10 cells, indicative of functional differentiation. Finally, cell fusion in TGF-beta-treated SM10 and HRP-1 cells was investigated by western blotting analysis of placental alkaline phosphatase and cadherin-11 and by microscopic analyses of cell morphology using green fluorescent protein (GFP) and rhodamine phalloidin staining. The western blotting and morphological analyses indicate TGF-beta-induced cell fusion and morphological differentiation in the SM10 cell line. The SM10 cell line will provide a new and unique model for detailed analysis of TGF-beta-induced molecular events associated with labyrinthine trophoblast differentiation and function.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Placenta/citologia , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Trofoblastos/fisiologia , Animais , Biomarcadores/análise , Fusão Celular , Linhagem Celular , Humanos , Camundongos , Ratos , Transfecção , Trofoblastos/citologia
19.
Stem Cells Dev ; 14(5): 535-47, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16305338

RESUMO

Trophoblasts provide a model to investigate fundamental mechanisms of stem cell differentiation, but the availability of trophoblast stem cell lines is limited. Here we report the development of an RT-PCR-based lineage-specific profile as a method to identify the lineages of placental trophoblast cells routinely and specifically. This profiling method was used to analyze the mouse SM10 and rat HRP-1 cell lines, isolated from a region of the placental labyrinth, but of previously unidentified lineage. Using this profile, the expression of trophoblast stem cell markers was detected in the SM10 and HRP-1 cells. In contrast, no expression of a marker of differentiated labyrinthine trophoblast was detected. Additionally, both cell lines expressed labyrinthine trophoblast-specific genes and did not express lineage-specific markers of spongiotrophoblasts or trophoblast giant cells. Our results suggest that SM10 and HRP-1 cell lines are trophoblast stem cell-like cell lines that can be maintained in undifferentiated but committed state in cell culture. These cell lines express labyrinthine-specific genes and are committed to differentiate solely into functional labyrinthine trophoblasts. Our profiling method provides a new technique to identify stem cells and their lineage-specific differentiation. This method additionally indicates that SM10 and HRP-1 cell lines provide new systems for future studies of stem cell differentiation, allowing investigation of basic mechanisms of differentiation, which may provide insights into the biophysics of development of a specialized system. This method should also prove to be useful for identification of other stem cell lines and examination of lineage-specific commitment.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Placenta/citologia , Células-Tronco/fisiologia , Trofoblastos/fisiologia , Animais , Biomarcadores/metabolismo , Ciclo Celular , Linhagem Celular , Forma Celular , Feminino , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Ratos , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trofoblastos/citologia
20.
J Cell Death ; 8: 1-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922583

RESUMO

Apoptosis is physiological cell death required for the cellular maintenance of homeostasis, and caspases play a major role in the execution of this process. Numerous disorders occur when levels of apoptosis within an organism are excessive, and several studies have explored the possibility of using caspase inhibitors to prevent these disorders. Q-VD-OPh (quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone), a novel pan caspase inhibitor, has been used because of its efficacy to inhibit apoptosis at low concentrations, its ability to cross the blood-brain barrier, as well as being nontoxic in vivo. This review examines Q-VD-OPh's ability to inhibit apoptosis in several animal models of human disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA