Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nitric Oxide ; 31: 38-47, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23545404

RESUMO

Angeli's salt (Na2N2O3) decomposes into nitroxyl (HNO) and nitrite (NO2(-)), compounds of physiological and therapeutic interest for their impact on biological signaling both through nitric oxide and nitric oxide independent pathways. Both nitrite and HNO oxidize oxygenated hemoglobin to methemoglobin. Earlier work has shown that HNO catalyzes the reduction of nitrite by deoxygenated hemoglobin. In this work, we have shown that HNO accelerates the oxidation of oxygenated hemoglobin by NO2(-). We have demonstrated this HNO mediated acceleration of the nitrite/oxygenated hemoglobin reaction with oxygenated hemoglobin being in excess to HNO and nitrite (as would be found under physiological conditions) by monitoring the formation of methemoglobin in the presence of Angeli's salt with and without added NO2(-). In addition, this acceleration has been demonstrated using the HNO donor 4-nitrosotetrahydro-2H-pyran-4-yl pivalate, a water-soluble acyloxy nitroso compound that does not release NO2(-) but generates HNO in the presence of esterase. This HNO donor was used both with and without NO2(-) and acceleration of the NO2(-) induced formation of methemoglobin was observed. We found that the acceleration was not substantially affected by catalase, superoxide dismutase, c-PTIO, or IHP, suggesting that it is not due to formation of extramolecular peroxide, NO2 or H2O2, or to modulation of allosteric properties. In addition, we found that the acceleration is not likely to be related to HNO binding to free reduced hemoglobin, as we found HNO binding to reduced hemoglobin to be much weaker than has previously been proposed. We suggest that the mechanism of the acceleration involves local propagation of autocatalysis in the nitrite-oxygenated Hb reaction. This acceleration of the nitrite oxyhemoglobin reaction could affect studies aimed at understanding physiological roles of HNO and perhaps nitrite and use of these agents in therapeutics such as hemolytic anemias, heart failure, and ischemia reperfusion injury.


Assuntos
Nitritos/metabolismo , Óxidos de Nitrogênio/química , Oxirredução/efeitos dos fármacos , Oxiemoglobinas/metabolismo , Cinética , Metemoglobina/química , Metemoglobina/metabolismo , Nitritos/química , Óxidos de Nitrogênio/farmacologia , Oxiemoglobinas/química
2.
Nat Plants ; 9(1): 36-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564632

RESUMO

Nitroxyl (HNO) is the one-electron reduced and protonated congener of nitric oxide (•NO), owning a distinct chemical profile. Based on real-time detection, we demonstrate that HNO is endogenously formed in Arabidopsis. Senescence and hypoxia induce shifts in the redox balance, triggering HNO decay or formation mediated by non-enzymatic •NO/HNO interconversion with cellular reductants. The stimuli-dependent HNO generation supports or competes with •NO signalling, depending on the local redox environment.


Assuntos
Arabidopsis , Óxidos de Nitrogênio/farmacologia , Óxido Nítrico , Oxirredução
3.
Vaccine ; 35(45): 6137-6142, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28967521

RESUMO

Generation of a potent antibody response that can be sustained over time is highly challenging in young infants. Our previous studies using a nursery-reared nonhuman primate model identified R848 conjugated to inactivated influenza virus as a highly immunogenic vaccine for neonates. Here we determined the effectiveness of this vaccine in mother-reared infants as well as its ability to promote improved responses at 6months compared to vaccination in the absence of R848. In agreement with our nursery study, R848 conjugated to influenza virus induced a higher antibody response in neonates compared to the non-adjuvanted vaccine. Further, the increase in the response relative to that induced by the non-adjuvanted vaccine was maintained at 6months suggesting the increased antibody secreting cells that resulted from inclusion of conjugated R848 production were capable of surviving long term. There was no significant difference in quality of antibody (i.e. neutralization or affinity), suggesting the beneficial effect of conjugated R848 during vaccination of neonates with inactivated influenza virus is likely manifest during the early generation of antibody secreting cells.


Assuntos
Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Primatas/imunologia , Vacinas de Produtos Inativados/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Animais Recém-Nascidos/imunologia , Animais Recém-Nascidos/virologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Chlorocebus aethiops , Infecções por Orthomyxoviridae/prevenção & controle , Primatas/virologia , Vacinação/métodos
4.
Free Radic Biol Med ; 55: 1-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165065

RESUMO

Hydrogen sulfide, an important gaseous signaling agent generated in numerous biological tissues, influences many physiological processes. This biological profile seems reminiscent of nitric oxide, another important endogenously synthesized gaseous signaling molecule. Hydrogen sulfide reacts with nitric oxide or oxidized forms of nitric oxide and nitric oxide donors in vitro to form species that display distinct biology compared to both hydrogen sulfide and NO. The products of these interesting reactions may include small-molecule S-nitrosothiols or nitroxyl, the one-electron-reduced form of nitric oxide. In addition, thionitrous acid or thionitrite, compounds structurally analogous to nitrous acid and nitrite, may constitute a portion of the reaction products. Both the chemistry and the biology of thionitrous acid and thionitrite, compared to nitric oxide or hydrogen sulfide, remain poorly defined. General mechanisms for the formation of S-nitrosothiols, nitroxyl, and thionitrous acid based upon the ability of hydrogen sulfide to act as a nucleophile and a reducing agent with reactive nitric oxide-based intermediates are proposed. Hydrogen sulfide reactivity seems extensive and could have an impact on numerous areas of redox-controlled biology and chemistry, warranting more work in this exciting and developing area.


Assuntos
Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Animais , Humanos
5.
Free Radic Biol Med ; 53(12): 2229-39, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23099417

RESUMO

Plasma hemoglobin (Hb) released during intravascular hemolysis has been associated with numerous deleterious effects that may stem from increased nitric oxide (NO) scavenging, but has also been associated with reactive oxygen species generation and platelet activation. Therapies that convert plasma oxyHb to metHb, or metHb to iron-nitrosyl Hb, could be beneficial because these species do not scavenge NO. In this study, we investigated the effects of Angeli's salt (AS; sodium α-oxyhyponitrite, Na2N2O3), a nitroxyl (HNO) and nitrite (NO2(-)) donor, on plasma Hb oxidation and formation of iron-nitrosyl Hb from metHb and on the vasoactivity of plasma Hb. We hypothesized that AS could ameliorate hemolysis-associated pathology via its preferential reactivity with plasma Hb, as opposed to red-cell-encapsulated Hb, and through its intrinsic vasodilatory activity. To test this hypothesis, we infused (n=3 per group) (1) cell-free Hb and AS, (2) cell-free Hb+0.9% NaCl, (3) AS+3% albumin, and (4) 3% albumin+0.9% NaCl (colloid controls for Hb and AS, respectively) in a canine model. Co-infusion of AS and cell-free Hb led to preferential conversion of plasma Hb to metHb, but the extent of conversion was lower than anticipated based on the in vivo concentration of AS relative to plasma Hb. This lower metHb yield was probably due to reactions of nitroxyl-derived AS with plasma components such as thiol-containing compounds. From a physiological and therapeutic standpoint, the infusion of Hb alone led to significant increases in mean arterial pressure (p=0.03) and systemic vascular resistance index (p=0.01) compared to controls. Infusion of AS alone led to significant decreases in these parameters and co-infusion of AS along with Hb had an additive effect in reversing the effects of Hb alone on the systemic circulation. Interestingly, in the pulmonary system, the decrease in pressure when AS was added to Hb was significantly less than would have been expected compared to the effects of Hb and AS alone, suggesting that inactivation of scavenging with AS reduced the direct vasodilatory effects of AS on the vasculature. We also found that AS reduced platelet activation when administered to whole blood in vitro. These data suggest that AS-like compounds could serve as therapeutic agents to counteract the negative vasoconstrictive consequences of hemolysis that occur in hemolytic anemias, transfusion of stored blood, and other diseases. Increases in metHb in the red blood cell, the potential of AS for neurotoxicity, and hypotension would need to be carefully monitored in a clinical trial.


Assuntos
Metemoglobina/metabolismo , Nitritos/farmacologia , Vasodilatadores/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cães , Eritrócitos/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Oxirredução , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Vasoconstrição
6.
Nitric Oxide ; 15(1): 1-4, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16510299

RESUMO

There is a great need to establish accurate, sensitive methods for measuring the concentration of nitrosothiols. Although some progress may have been made recently, differing methodologies have lead to reports of basal levels of nitrosothiols in human plasma that differ by three orders of magnitude. The Saville assay has been widely accepted as an accurate method for measuring nitrosothiols, but one that suffers from sensitivity below that of some other methods. Recently, it has been suggested that when hemoglobin is included in reaction mixtures used for the Saville assay, the sensitivity can be increased by an order of magnitude. Here we show that, on the contrary, the presence of sufficient hemoglobin in the Saville assay decreases its sensitivity.


Assuntos
Hemoglobinas , S-Nitrosoglutationa/análise , Compostos Azo , Sensibilidade e Especificidade , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA