Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2300320120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186845

RESUMO

Iridoviridae, such as the lymphocystis disease virus-1 (LCDV-1) and other viruses, encode viral insulin-like peptides (VILPs) which are capable of triggering insulin receptors (IRs) and insulin-like growth factor receptors. The homology of VILPs includes highly conserved disulfide bridges. However, the binding affinities to IRs were reported to be 200- to 500-fold less effective compared to the endogenous ligands. We therefore speculated that these peptides also have noninsulin functions. Here, we report that the LCDV-1 VILP can function as a potent and highly specific inhibitor of ferroptosis. Induction of cell death by the ferroptosis inducers erastin, RSL3, FIN56, and FINO2 and nonferroptotic necrosis produced by the thioredoxin-reductase inhibitor ferroptocide were potently prevented by LCDV-1, while human insulin had no effect. Fas-induced apoptosis, necroptosis, mitotane-induced cell death and growth hormone-releasing hormone antagonist-induced necrosis were unaffected, suggesting the specificity to ferroptosis inhibition by the LCDV-1 VILP. Mechanistically, we identified the viral C-peptide to be required for inhibition of lipid peroxidation and ferroptosis inhibition, while the human C-peptide exhibited no antiferroptotic properties. In addition, the deletion of the viral C-peptide abolishes radical trapping activity in cell-free systems. We conclude that iridoviridae, through the expression of insulin-like viral peptides, are capable of preventing ferroptosis. In analogy to the viral mitochondrial inhibitor of apoptosis and the viral inhibitor of RIP activation (vIRA) that prevents necroptosis, we rename the LCDV-1 VILP a viral peptide inhibitor of ferroptosis-1. Finally, our findings indicate that ferroptosis may function as a viral defense mechanism in lower organisms.


Assuntos
Apoptose , Insulina , Humanos , Peptídeo C , Necrose , Morte Celular
2.
Horm Metab Res ; 54(8): 510-513, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35388439

RESUMO

Diabetic nephropathy is the most common condition that requires a chronic renal replacement therapy, such as hemodialysis, peritoneal dialysis, kidney transplantation, or simultaneous kidney-pancreas transplantation. Chronic kidney disease progression, that is the loss of nephrons, which causes the continuous decline of the eGFR, underlies the pathogenesis of diabetic nephropathy. During the COVID-19 pandemic, it became clear that diabetic nephropathy is amongst the independent risk factors that predicts unfavourable outcome upon SARS-CoV2 infection. While we still lack conclusive mechanistic insights into how nephrons are rapidly lost upon SARS-CoV2 infection and why patients with diabetic nephropathy are more susceptible to severe outcomes upon SARS-CoV2 infection, here, we discuss several aspects of the interface of COVID-19 with diabetic nephropathy. We identify the shortage of reliable rodent models of diabetic nephropathy, limited treatment options for human diabetic nephropathy and the lack of knowledge about virus-induced signalling pathways of regulated necrosis, such as necroptosis, as key factors that explain our failure to understand this system. Finally, we focus on immunosuppressed patients and discuss vaccination efficacy in these and diabetic patients. We conclude that more basic science and mechanistic understanding will be required both in diabetic nephropathy as well as in host immune responses to the SARS-CoV2 virus if novel therapeutic strategies are desired.


Assuntos
COVID-19 , Diabetes Mellitus , Nefropatias Diabéticas , Falência Renal Crônica , Nefropatias Diabéticas/patologia , Humanos , Pandemias , RNA Viral , SARS-CoV-2
3.
Sci Adv ; 10(11): eadk7329, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489367

RESUMO

Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed. In contrast, MAVS mediated a noncanonical signal resulting in a prominent increase in mitochondrial ROS levels, and increase in the BACH1/pNRF2 transcription factor ratio and GPX4 up-regulation, which was associated with a 50% decrease in intracellular glutathione levels. We conclude that siRNAs commonly sensitize to ferroptosis and may severely compromise the conclusions drawn from silencing approaches in biomedical research. Finally, as ferroptosis contributes to a variety of pathophysiological processes, we cannot exclude side effects in human siRNA-based therapeutical concepts that should be clinically tested.


Assuntos
Ferroptose , Transdução de Sinais , Humanos , RNA Interferente Pequeno/genética , Ferroptose/genética , Regulação para Cima , Fatores de Transcrição/metabolismo
4.
Cell Death Dis ; 13(9): 792, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109515

RESUMO

Signaling pathways of regulated necrosis, such as necroptosis and ferroptosis, contribute to acute kidney injury (AKI), but the role of pyroptosis is unclear. Pyroptosis is mediated by the pore-forming protein gasdermin D (GSDMD). Here, we report a specific pattern of GSDMD-protein expression in the peritubular compartment of mice that underwent bilateral ischemia and reperfusion injury (IRI). Along similar lines, the GSDMD-protein expression in whole kidney lysates increased during the first 84 h following cisplatin-induced AKI. Importantly, unlike whole kidney lysates, no GSDMD-protein expression was detectable in isolated kidney tubules. In IRI and cisplatin-induced AKI, GSDMD-deficient mice exhibited hypersensitivity to injury as assessed by tubular damage, elevated markers of serum urea, and serum creatinine. This hypersensitivity was reversed by a combined deficiency of GSDMD and the necroptosis mediator mixed lineage kinase domain-like (MLKL). In conclusion, we demonstrate a non-cell autonomous role for GSDMD in protecting the tubular compartment from necroptosis-mediated damage in IRI.


Assuntos
Injúria Renal Aguda , Hipersensibilidade , Injúria Renal Aguda/metabolismo , Animais , Cisplatino/efeitos adversos , Creatinina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA