Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Angiogenesis ; 13(3): 259-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20803239

RESUMO

EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein-protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor EphB4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Bioensaio , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Neovascularização Patológica/enzimologia , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Receptor EphB4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
2.
Clin Cancer Res ; 15(5): 1612-22, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19223496

RESUMO

PURPOSE: Comparison of the antiangiogenic/vascular properties of the oral mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) and the vascular endothelial growth factor receptor (VEGFR) inhibitor vatalanib (PTK/ZK). EXPERIMENTAL DESIGN: Antiproliferative activity against various tumor histotypes and downstream effects on the mTOR pathway were measured in vitro. In vivo, antitumor activity, plasma, and tumor RAD001 levels were measured. Activity in several different angiogenic/vascular assays in vitro and in vivo was assessed and compared with PTK/ZK. RESULTS: RAD001 inhibited proliferation in vitro (IC50 values<1 nmol/L to >1 micromol/L), and in sensitive and insensitive tumor cells, pS6 kinase and 4E-BP1 were inhibited. Activity in vitro did not correlate with activity in vivo and significant responses were seen in tumors with IC50 values>10-fold higher than tumor RAD001 concentrations. In vitro, RAD001 inhibited the proliferation of VEGF-stimulated and fibroblast growth factor-stimulated human endothelial cells but not dermal fibroblasts and impaired VEGF release from both sensitive and insensitive tumor cells but did not inhibit migration of human endothelial cells. In vivo, in tumor models derived from either sensitive or insensitive cells, RAD001 reduced Tie-2 levels, the amount of mature and immature vessels, total plasma, and tumor VEGF. RAD001 did not affect blood vessel leakiness in normal vasculature acutely exposed to VEGF nor did it affect tumor vascular permeability (Ktrans) as measured by dynamic contrast-enhanced magnetic resonance imaging. However, the pan-VEGFR inhibitor PTK/ZK inhibited endothelial cell migration and vascular permeability but had less effect on mature vessels compared with RAD001. CONCLUSIONS: VEGFR and mTOR inhibitors show similar but also distinct effects on tumor vascular biology, which has implications for their clinical activity alone or in combination.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Experimentais/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Ftalazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Piridinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sirolimo/análogos & derivados , Inibidores da Angiogênese/farmacocinética , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Everolimo , Feminino , Humanos , Técnicas Imunoenzimáticas , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Ftalazinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/metabolismo , Piridinas/farmacocinética , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos WF , Receptor TIE-2/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sirolimo/farmacocinética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Distribuição Tecidual , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
J Bone Miner Res ; 26(10): 2486-97, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21812026

RESUMO

The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.


Assuntos
Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Homeostase/fisiologia , Rim/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais/fisiologia , Vitamina D/fisiologia , Animais , Western Blotting , Linhagem Celular , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real
5.
Cancer Chemother Pharmacol ; 62(6): 1045-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18301895

RESUMO

INTRODUCTION: Patupilone is a microtubule stabilizer (MTS) currently in clinical development. Here, we evaluate the anti-cancer activity in vitro and in vivo in comparison to paclitaxel and describe the pharmacokinetics (PK) of patupilone in tumor-bearing nude mice and rats. METHODS: The potency in vitro of patupilone and two other MTS, paclitaxel and ixabepilone, was determined using human colon carcinoma cell lines with low (HCT-116, HT-29, RKO) and high (HCT-15) P-glycoprotein expression (P-gp), as well as two multi-drug resistance (MDR) model cell pairs, MCF7/ADR and KB-8511 cells and their respective drug-sensitive parental counterparts. The PK of patupilone was investigated in nude mice bearing HCT-15 or HT-29 xenografts and in rats bearing s.c. pancreatic CA20498 tumors or A15 glioma tumors. Anti-cancer activity in vivo was compared to that of paclitaxel using three different human tumor colon models. The retention and efficacy of patupilone was compared in small and large HT-29 xenografts whose vascularity was determined by non-invasive magnetic resonance imaging. RESULTS: Patupilone was highly potent in vitro against four different colon carcinoma cell lines including those showing multi-drug-resistance. In contrast, paclitaxel and ixabepilone displayed significantly reduced activity with markedly increased resistance factors. In both rats and mice, a single i.v. bolus injection of patupilone (1.5-4 mg/kg) rapidly distributed from plasma to all tissues and was slowly eliminated from muscle, liver and small intestine, but showed longer retention in tumor and brain with no apparent elimination over 24 h. Patupilone showed significant activity against three human colon tumor models in vivo, unlike paclitaxel, which only had activity against low P-gp expressing tumors. In HT-29 tumors, patupilone activity and retention were independent of tumor size, blood volume and flow. CONCLUSIONS: The high potency of patupilone, which is not affected by P-gp expression either in vitro or in vivo, and favorable PK, independent of tumor vascularity, suggest that it should show significant activity in colorectal cancer and in other indications where high P-gp expression may compromise taxane activity.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Epotilonas/uso terapêutico , Microtúbulos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/irrigação sanguínea , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Epotilonas/farmacocinética , Epotilonas/farmacologia , Feminino , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA