Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(3): 503-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363531

RESUMO

The impact of benzo[ghi]perylenetriimide (BPTI) dye aggregation on the performance of photoelectrochemical devices was explored, through imide-substitution with either alkyl (BPTI-A, 2-ethylpropyl) or bulky aryl (BPTI-B, 2,6-diisopropylphenyl) moieties, to, respectively, enable or suppress aggregation. While both dyes demonstrated similar monomeric optoelectronic properties in solution, adsorption onto mesoporous SnO2 revealed different behavior, with BPTI-A forming aggregates via π-stacking and BPTI-B demonstrating reduced aggregation in the solid state. BPTI photoanodes were tested in dye-sensitized solar cells (DSSCs) before application to dye-sensitized photoelectrochemical cells (DSPECs) for Br2 production (a strong oxidant) coupled to H2 generation (a solar fuel). BPTI-A demonstrated a twofold higher dye loading of the SnO2 surface than BPTI-B, resulting in a fivefold enhancement to both photocurrent and Br2 production. The enhanced output of the photoelectrochemical systems (with respect to dye loading) was attributed to both J- and H- aggregation phenomena in BPTI-A photoanodes that lead to improved light harvesting. Our investigation provides a strategy to exploit self-assembly via aggregation to improve molecular light-harvesting and charge separation properties that can be directly applied to dye-sensitized photoelectrochemical devices.

2.
Angew Chem Int Ed Engl ; 61(21): e202200175, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35266261

RESUMO

This work reports an aqueous dye-sensitized photoelectrochemical cell (DSPEC) capable of oxidizing glycerol (an archetypical biobased compound) coupled with H2 production. We employed a mesoporous TiO2 photoanode sensitized with the high potential thienopyrroledione-based dye AP11, encased in an acetonitrile-based redox-gel that protects the photoanode from degradation by aqueous electrolytes. The use of the gel creates a biphasic system with an interface at the organic (gel) electrode and aqueous anolyte. Embedded in the acetonitrile gel is 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), acting as both a redox-mediator and a catalyst for oxidative transformations. Upon oxidation of TEMPO by the photoexcited dye, the in situ generated TEMPO+ shuttles through the gel to the acetonitrile-aqueous interface, where it acts as an oxidant for the selective conversion of glycerol to glyceraldehyde. The introduction of the redox-gel layer affords a 10-fold increase in the conversion of glycerol compared to the purely aqueous system. Our redox-gel protected photoanode yielded a stable photocurrent over 48 hours of continuous operation, demonstrating that this DSPEC is compatible with alkaline aqueous reactions.


Assuntos
Corantes , Energia Solar , Acetonitrilas , Corantes/química , Óxidos N-Cíclicos , Glicerol , Oxirredução , Fotossíntese , Água/química
3.
Chemistry ; 27(1): 218-221, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32902899

RESUMO

This work reports a dye-sensitized photoelectrochemical cell (DSPEC) that couples redox-mediated light-driven oxidative organic transformations to reductive hydrogen (H2 ) formation. The DSPEC photoanode consists of a mesoporous anatase TiO2 film on FTO (fluorine-doped tin oxide), sensitized with the thienopyrroledione-based dye AP11, while H2 was formed at a FTO-Pt cathode. Irradiation of the dye-sensitized photoanode transforms 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to the oxidized TEMPO (TEMPO+ ), which acts as a chemical oxidant for the conversion of benzyl alcohol. The TEMPO0/+ couple, previously used as redox mediator in DSSC, mediates efficient electron transfer from the organic substrate to the photo-oxidized dye. A DSPEC photoreactor was designed that allows in situ monitoring the reaction progress by infrared spectroscopy and gas chromatography. Sustained light-driven oxidation of benzyl alcohol to benzaldehyde within the DSPEC photoreactor, using of TEMPO as mediator, demonstrated the efficiency of the device, with a photocurrent of 0.4 mA cm-2 , approaching quantitative Faradaic efficiency and exhibiting excellent device stability.

4.
Biophys J ; 111(10): 2162-2175, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851940

RESUMO

A system based on two designed peptides, namely the cationic peptide K, (KIAALKE)3, and its complementary anionic counterpart called peptide E, (EIAALEK)3, has been used as a minimal model for membrane fusion, inspired by SNARE proteins. Although the fact that docking of separate vesicle populations via the formation of a dimeric E/K coiled-coil complex can be rationalized, the reasons for the peptides promoting fusion of vesicles cannot be fully explained. Therefore it is of significant interest to determine how the peptides aid in overcoming energetic barriers during lipid rearrangements leading to fusion. In this study, investigations of the peptides' interactions with neutral PC/PE/cholesterol membranes by fluorescence spectroscopy show that tryptophan-labeled K∗ binds to the membrane (KK∗ ∼6.2 103 M-1), whereas E∗ remains fully water-solvated. 15N-NMR spectroscopy, depth-dependent fluorescence quenching, CD-spectroscopy experiments, and MD simulations indicate a helix orientation of K∗ parallel to the membrane surface. Solid-state 31P-NMR of oriented lipid membranes was used to study the impact of peptide incorporation on lipid headgroup alignment. The membrane-immersed K∗ is found to locally alter the bilayer curvature, accompanied by a change of headgroup orientation relative to the membrane normal and of the lipid composition in the vicinity of the bound peptide. The NMR results were supported by molecular dynamics simulations, which showed that K reorganizes the membrane composition in its vicinity, induces positive membrane curvature, and enhances the lipid tail protrusion probability. These effects are known to be fusion relevant. The combined results support the hypothesis for a twofold role of K in the mechanism of membrane fusion: 1) to bring opposing membranes into close proximity via coiled-coil formation and 2) to destabilize both membranes thereby promoting fusion.


Assuntos
Bicamadas Lipídicas/metabolismo , Fusão de Membrana , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA