Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(25): 9692-8, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22615407

RESUMO

The theoretical description of the forces that shape ecological communities focuses around two classes of models. In niche theory, deterministic interactions between species, individuals, and the environment are considered the dominant factor, whereas in neutral theory, stochastic forces, such as demographic noise, speciation, and immigration, are dominant. Species abundance distributions predicted by the two classes of theory are difficult to distinguish empirically, making it problematic to deduce ecological dynamics from typical measures of diversity and community structure. Here, we show that the fusion of species abundance data with genome-derived measures of evolutionary distance can provide a clear indication of ecological dynamics, capable of quantifying the relative roles played by niche and neutral forces. We apply this technique to six gastrointestinal microbiomes drawn from three different domesticated vertebrates, using high-resolution surveys of microbial species abundance obtained from carefully curated deep 16S rRNA hypervariable tag sequencing data. Although the species abundance patterns are seemingly well fit by the neutral theory of metacommunity assembly, we show that this theory cannot account for the evolutionary patterns in the genomic data; moreover, our analyses strongly suggest that these microbiomes have, in fact, been assembled through processes that involve a significant nonneutral (niche) contribution. Our results demonstrate that high-resolution genomics can remove the ambiguities of process inference inherent in classic ecological measures and permits quantification of the forces shaping complex microbial communities.


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Bovinos , Análise de Componente Principal , RNA Ribossômico 16S/genética , Especificidade da Espécie , Suínos
2.
Nature ; 452(7187): 629-32, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18337718

RESUMO

Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Genômica , Vírus/genética , Vírus/metabolismo , Animais , Antozoários/fisiologia , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Quimiotaxia/genética , Biologia Computacional , Culicidae/fisiologia , Peixes/fisiologia , Água Doce , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Microbiologia , Água do Mar , Vírus/isolamento & purificação
3.
J Nutr ; 142(7): 1259-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22649263

RESUMO

The relative contribution of novel fibers such as polydextrose and soluble corn fiber (SCF) to the human gut microbiome and its association with host physiology has not been well studied. This study was conducted to test the impact of polydextrose and SCF on the composition of the human gut microbiota using 454 pyrosequencing and to identify associations among fecal microbiota and fermentative end-products. Healthy adult men (n = 20) with a mean dietary fiber (DF) intake of 14 g/d were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants consumed 3 treatment snack bars/d during each 21-d period that contained no supplemental fiber (NFC), polydextrose (PDX; 21 g/d), or SCF (21 g/d) for 21 d. There were no washout periods. Fecal samples were collected on d 16-21 of each period; DNA was extracted, followed by amplification of the V4-V6 region of the 16S rRNA gene using barcoded primers. PDX and SCF significantly affected the relative abundance of bacteria at the class, genus, and species level. The consumption of PDX and SCF led to greater fecal Clostridiaceae and Veillonellaceae and lower Eubacteriaceae compared with a NFC. The abundance of Faecalibacterium, Phascolarctobacterium, and Dialister was greater (P < 0.05) in response to PDX and SCF intake, whereas Lactobacillus was greater (P < 0.05) only after SCF intake. Faecalibacterium prausnitzii, well known for its antiinflammatory properties, was greater (P < 0.05) after fiber consumption. Principal component analysis clearly indicated a distinct clustering of individuals consuming supplemental fibers. Our data demonstrate a beneficial shift in the gut microbiome of adults consuming PDX and SCF, with potential application as prebiotics.


Assuntos
Bactérias/efeitos dos fármacos , Colo/microbiologia , Fibras na Dieta/farmacologia , Glucanos/farmacologia , Metagenoma/efeitos dos fármacos , Prebióticos , Zea mays/química , Adulto , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Técnicas de Tipagem Bacteriana , Estudos Cross-Over , DNA , Primers do DNA , Dieta , Fezes/microbiologia , Humanos , Inflamação/microbiologia , Masculino , Análise de Componente Principal , RNA Ribossômico 16S
4.
Proc Natl Acad Sci U S A ; 106(6): 1948-53, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19181843

RESUMO

The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).


Assuntos
Genômica/métodos , Glicosídeo Hidrolases/genética , Metabolômica/métodos , Metagenoma , Animais , Sequência de Bases , Bovinos , Celulossomas/genética , Dieta , Alimentos , Glicosídeo Hidrolases/análise , Isópteros , Metabolismo , Dados de Sequência Molecular , Rúmen
5.
PLoS One ; 16(5): e0251883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014980

RESUMO

Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Microbiota/genética , Sulfatos/metabolismo , Antraquinonas/química , Bactérias/química , Biodegradação Ambiental , Transporte de Elétrons/genética , Compostos Férricos/química , Água Subterrânea/química , Humanos , Oxirredução , RNA Ribossômico 16S/genética , Óxidos de Enxofre/química
6.
FEMS Microbiol Lett ; 285(2): 188-94, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18564339

RESUMO

Ruminococcus flavefaciens is a vital cellulosome-producing fibrolytic rumen bacterium. The arrangement of the cellulosomal scaffoldin gene cluster (scaC-scaA-scaB-cttA-scaE) is conserved in two R. flavefaciens strains (17 and FD-1). Sequence analysis revealed a high mosaic conservation of the intergenic regions in the two strains that contrasted sharply with the divergence of the structural sca gene sequences. Based on the conserved intergenic regions, we designed PCR primers in order to examine the sca gene cluster in additional R. flavefaciens strains (C94, B34b, C1a and JM1). Using these conserved and/or degenerate primers, the scaC, scaA and scaB genes were amplified in all six strains, while the entire sca gene cluster and the proximal genes cttA and scaE were successfully amplified in four of the strains (17, FD-1, C94 and JM1). The sequencing of scaA and scaC genes in all the strains yielded additional insight into the variability of the structural genes with regard to the number and type of cohesin modules contained in a conserved molecular skeleton. Moreover, the scaC gene, being short and variable, appears to be a promising functional phylotyping target for metagenomic population studies of R. flavefaciens in the rumen as a function of the individual host animal.


Assuntos
Celulossomas/genética , Genes Bacterianos , Família Multigênica , Polimorfismo Genético , Ruminococcus/classificação , Ruminococcus/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Intergênico , DNA Ribossômico/química , DNA Ribossômico/genética , Ordem dos Genes , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Estrutura Terciária de Proteína , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sintenia , Coesinas
7.
PLoS One ; 11(1): e0146689, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800443

RESUMO

Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.


Assuntos
Ácido Acético/metabolismo , Desulfotomaculum/metabolismo , Compostos Férricos/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Consórcios Microbianos/fisiologia , Sulfatos/metabolismo , Sequência de Bases , Biodegradação Ambiental , Carbono/química , Carbonatos/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Desulfotomaculum/genética , Elétrons , Metabolismo Energético/fisiologia , Compostos Ferrosos/metabolismo , Redes e Vias Metabólicas/fisiologia , Oxirredução , Fosfatos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Am J Clin Nutr ; 101(1): 55-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25527750

RESUMO

BACKGROUND: In our published randomized, double-blind, placebo-controlled, 3-period crossover trial, healthy adult men (n = 21) consumed bars containing no supplemental fiber (placebo; NFC), polydextrose (21 g/d), and soluble corn fiber (SCF; 21 g/d) for 21 d each. Fecal specimens were collected between days 16 and 21 for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for bacterial taxa identification. Fiber supplementation decreased fecal putrefaction compounds and shifted abundances of several bacterial taxa. OBJECTIVE: The objective was to perform whole-genome shotgun 454 pyrosequencing on the same fecal specimens collected in that clinical trial to obtain comprehensive fecal bacterial genome sequencing coverage and explore the full range of bacterial genetic information in the fecal microbiome, thereby using a systematic approach to study the impact of dietary fiber supplementation on fecal metabolites, bacterial taxa, and bacterial metagenomes. DESIGN: Fecal samples were subjected to whole-genome shotgun 454 pyrosequencing to identify both fecal bacterial populations present and their functional genetic capacity. RESULTS: Whole-genome shotgun sequencing results revealed that fiber consumption shifted the Bacteroidetes:Firmicutes ratio, increasing the relative abundance of Bacteroidetes 12 ± 2% and 13 ± 2% with polydextrose and SCF, respectively, compared with NFC. Bivariate correlations showed a positive correlation between the Bacteroidetes:Firmicutes ratio and total dietary fiber intake but not body mass index. Principal coordinates analysis of Bray-Curtis distances indicated that bacterial gene composition was more similar in participants consuming fibers (polydextrose and SCF combined) in comparison with NFC. Shifts in bacterial gene abundances after polydextrose and SCF supplementation included genes associated with carbohydrate, amino acid, and lipid metabolism, as well as metabolism of cofactors and vitamins. CONCLUSION: This study conveys novel information about the impact of dietary fiber supplementation on the phylogenetic structure and functional capacity of the fecal microbiome of healthy adults.


Assuntos
Bacteroidetes/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Intestinos/microbiologia , Microbiota , Prebióticos , Adulto , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Estudos Cross-Over , Fenômenos Fisiológicos do Sistema Digestório , Método Duplo-Cego , Fezes/microbiologia , Fermentação , Seguimentos , Glucanos/administração & dosagem , Glucanos/efeitos adversos , Glucanos/química , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Humanos , Illinois , Intestinos/fisiologia , Masculino , Tipagem Molecular , Filogenia , Prebióticos/efeitos adversos , Análise de Componente Principal , Solubilidade , Adulto Jovem , Zea mays/efeitos adversos , Zea mays/química
9.
Microbiome ; 1(1): 20, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24450928

RESUMO

BACKGROUND: Preterm infants represent a unique patient population that is born functionally immature and must accomplish development under the influence of a hospital environment. Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. The purpose of this study was to evaluate the progression of intestinal microbiota community development between preterm infants who remained healthy compared to preterm infants who developed NEC. RESULTS: Weekly fecal samples from ten preterm infants, five with NEC and five matched healthy controls were obtained. Bacterial DNA from individual fecal samples was subjected to sequencing of 16S rRNA-based inventories using the 454 GS-FLX platform. Fecal samples from control infants demonstrated a temporal pattern in their microbiota, which converged toward that of a healthy full term breast-fed infant. Microbiota development in NEC patients diverged from controls beginning three weeks prior to diagnosis. Shotgun metagenomic sequencing was performed to identify functional differences in the respective microbiota of fecal samples from a set of twins in which one twin developed NEC and one did not. The majority of the differentially abundant genes in the NEC patient were associated with carbohydrate metabolism and mapped to members of the family Enterobacteriaceae. This may indicate an adaptation of the community to an altered profile of substrate availability for specific members as a first step towards the development of NEC. We propose that the microbial communities as a whole may metabolize milk differently, resulting in differential substrate availability for specific microbial groups. Additional differentially represented gene sets of interest were related to antibiotic resistance and vitamin biosynthesis. CONCLUSIONS: Our results suggest that there is a temporal component to microbiome development in healthy preterm infants. Thus, bacteriotherapy for the treatment or prevention of NEC must consider this temporal component of the microbial community in addition to its taxonomic composition and functional content.

10.
Microbiome ; 1(1): 9, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24451366

RESUMO

BACKGROUND: The indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis. A subset of patients who undergo IPAA develops an inflammatory condition known as pouchitis, which is thought to mirror the pathogenesis of ulcerative colitis. Following the development of the microbiome of the pouch would allow characterization of the microbial community that predates the development of overt disease. RESULTS: We monitored the development of the pouch microbiota in four patients who underwent IPAA. Mucosal and luminal samples were obtained prior to takedown of the diverting ileostomy and compared to samples obtained 2, 4 and 8 weeks after intestinal continuity had been restored. Through the combined analysis of 16S rRNA-encoding gene amplicons, targeted 16S amplification and microbial cultivation, we observed major changes in structure and function of the pouch microbiota following ileostomy. There is a relative increase in anaerobic microorganisms with the capacity for fermentation of complex carbohydrates, which corresponds to the physical stasis of intestinal contents in the ileal pouch. Compared to the microbiome structure encountered in the colonic mucosa of healthy individuals, the pouch microbial community in three of the four individuals was quite distinct. In the fourth patient, a community that was much like that seen in a healthy colon was established, and this patient also had the most benign clinical course of the four patients, without the development of pouchitis 2 years after IPAA. CONCLUSIONS: The microbiota that inhabit the ileal-anal pouch of patients who undergo IPAA for treatment of ulcerative colitis demonstrate significant structural and functional changes related to the restoration of fecal flow. Our preliminary results suggest once the pouch has assumed the physiologic role previously played by the intact colon, the precise structure and function of the pouch microbiome, relative to a normal colonic microbiota, will determine if there is establishment of a stable, healthy mucosal environment or the reinitiation of the pathogenic cascade that results in intestinal inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA