Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncoscience ; 2(4): 382-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097872

RESUMO

mTOR is a protein kinase that plays a central role in regulating critical cellular processes. We evaluated the activation and cellular localization of the mTOR pathway in multiple myeloma (MM) and analyzed the role of pomalidomide in regulating mTOR. By immunohistochemistry cytoplasmic p-mTOR stained positive in 57 out 101 (57.6%) cases with a nuclear p-mTOR localization in 14 out 101 samples (13.8%). In the 70 MM samples analyzed for the entire pathway, p-mTOR expression significantly correlated with p-AKT, p-P70S6K, and p-4E-BP1 suggesting that the AKT/mTOR pathway is activated in a subset of MM patients. Immunofluorescence assays demonstrated that mTOR protein is distributed throughout the cytoplasm and the nucleus at baseline in MM cell lines and in plasma cells of 13 MM patients and that pomalidomide facilitated the shift of the mTOR protein in the nucleus. By western blotting, treatment with pomalidomide increased nuclear mTOR and p-mTOR expression levels in the nucleus with a concomitant decrease of the cytoplasmic fractions while does not seem to affect significantly AKT phosphorylation status. In MM cells the anti-myeloma activity of pomalidomide may be mediated by the regulation of the mTOR pathway.

2.
Biochem Pharmacol ; 86(1): 138-45, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23583258

RESUMO

Cholesterol auto-oxidation products, namely oxysterols, are widely present in cholesterol-rich foods. They are thought to potentially interfere with homeostasis of the human digestive tract, playing a role in intestinal mucosal damage. This report concerns the marked up-regulation in differentiated CaCo-2 colonic epithelial cells of two key inflammatory interleukins, IL-6 and IL-8, caused by a mixture of oxysterols representative of a high cholesterol diet. This strong pro-inflammatory effect appeared to be dependent on the net imbalance of red-ox equilibrium with the production of excessive levels of reactive oxygen species through the colonic NADPH-oxidase NOX1 activation. Induction of NOX1 was markedly while not fully inhibited by CaCo-2 cell pre-incubation with phenolic extracts obtained from well-selected wines from typical grape varieties grown in Sardinia. Oxysterol-dependent NOX1 activation, as well as interleukin synthesis, were completely prevented by Cannonau red wine extract that contains an abundant phenolic fraction, in particular phenolic acids and flavonoids. Conversely, cell pre-treatment with Vermentino white wine extract with smaller phenolic fraction showed only a partial NOX1 down-regulation and was ineffective in interleukin synthesis induced by dietary oxysterols. It is thus likely that the effects of Sardinian wine extracts against intestinal inflammation induced by dietary oxysterols are mainly due to their high phenolic content: low doses of phenolics would be responsible only for direct scavenging oxysterol-dependent ROS production. Besides this direct activity, an excess of phenolic compounds detectable in red wine, may exert an additional indirect action by blocking oxysterol-related NOX1 induction, thus totally preventing the pro-oxidant and pro-inflammatory events triggered by dietary oxysterols.


Assuntos
Colesterol/análogos & derivados , Colesterol/farmacologia , Fenóis/farmacologia , Vinho , Células CACO-2 , Dieta , Ativação Enzimática , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Itália , NADPH Oxidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA