Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Biol ; 20(6): e3001659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658004

RESUMO

In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.


Assuntos
Endocitose , Sinapses , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Camundongos , Neurônios/fisiologia , Sinapses/metabolismo
2.
PLoS Biol ; 17(9): e3000445, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536487

RESUMO

Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5-τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity.


Assuntos
Sinalização do Cálcio , Plasticidade Neuronal , Canais de Cátion TRPC/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Glutamina/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Neurônios/metabolismo
3.
EMBO J ; 36(18): 2770-2789, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790178

RESUMO

Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo , Multimerização Proteica , Transmissão Sináptica , Canais de Cátion TRPC/metabolismo , Animais , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Canais de Cátion TRPC/genética
4.
J Mol Cell Cardiol ; 135: 79-89, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419438

RESUMO

The identification of spatiotemporally restricted Ca2+ signals, Ca2+ sparks, was instrumental for our understanding of cardiac Ca2+ homeostasis. High-speed 2D confocal imaging enables acquisition of such Ca2+ sparks with high-content information but their full appreciation is constrained by the lack of unbiased and easy-to-use analysis tools. We developed a software toolset for unbiased and automatic Ca2+ spark analysis for huge data sets of subcellular Ca2+ signals. iSpark was developed to be scanner and detector independent. In myocytes from hearts subjected to various degrees of hypertrophy we acquired >5.000.000 Ca2+ sparks from 14 mice. The iSpark-enabled analysis of this large Ca2+ spark data set showed that the highly organized distribution of Ca2+ sparks present in healthy cells disarrayed concomitant with the development of aberrant transverse tubules and disease severity. Thus, iSpark represents a versatile and universal tool for analyzing local Ca2+ signaling in healthy as well as diseased, aberrant local Ca2+ signal transduction. The results from the unbiased analysis of large data sets provide a deeper insight into possible mechanisms contributing to the onset and progression of cardiac diseases such as hypertrophy.


Assuntos
Sinalização do Cálcio , Processamento de Imagem Assistida por Computador , Miócitos Cardíacos/metabolismo , Software , Animais , Camundongos , Microscopia de Fluorescência , Miócitos Cardíacos/citologia
5.
Pflugers Arch ; 470(1): 169-180, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887593

RESUMO

Vesicle fusion is elementary for intracellular trafficking and release of signal molecules, thus providing the basis for diverse forms of intercellular communication like hormonal regulation or synaptic transmission. A detailed characterization of the mechanisms underlying exocytosis is key to understand how the nervous system integrates information and generates appropriate responses to stimuli. The machinery for vesicular release employs common molecular players in different model systems including neuronal and neuroendocrine cells, in particular members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family, Sec1/Munc18-like proteins, and other accessory factors. To achieve temporal precision and speed, excitable cells utilize specialized regulatory proteins like synaptotagmin and complexin, whose interplay putatively synchronizes vesicle fusion and enhances stimulus-secretion coupling. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. Specifically, we will focus on the role of vesicle associated membrane proteins, also referred to as vesicular SNAREs, in fusion and rapid cargo discharge. We will further discuss the functions of SNARE regulators during exocytosis and focus on chromaffin cell as a model system of choice that allows for detailed structure-function analyses and direct measurements of vesicle fusion under precise control of intracellular [Ca]i.


Assuntos
Células Cromafins/metabolismo , Proteínas SNARE/metabolismo , Animais , Exocitose , Humanos , Fusão de Membrana
6.
Biochim Biophys Acta ; 1858(4): 855-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851777

RESUMO

The vesicular protein synaptobrevin II (sybII) constitutes a central component of the SNARE complex, which mediates vesicle fusion in neuronal exocytosis. Previous studies revealed that the transmembrane domain (TMD) of sybII is playing a critical role in the fusion process and is involved in all distinct fusion stages from priming to fusion pore opening. Here, we analyzed sequence-dependent effects of sybII and of mutants of sybII on both structure and flexibility of the protein and the interactions with a phospholipid bilayer by means of microsecond atomistic simulations. The sybII TMD was found to direct the folding of both the juxtamembrane helix and of the connecting linker and thus to influence both the intrinsic helicity and flexibility. Fusion active peptides revealed two helical segments, one for the juxtamembrane region and one for the TMD, connected by a flexible linker. In contrast, a fusion-inactive poly-leucine TMD mutant assumes a structure with a comparably rigid linker that is suggested to hinder the formation of the trans-SNARE complex during fusion. Kinking of the TMD at the central glycine together with anchoring of the TMD via conserved tryptophans and a lysine in position 94 likely yields an enhanced flexibility of sybII for different membrane thickness. All studied peptides were found to deform the outer membrane layer by altering the lipid head group orientation, causing partial membrane dehydration and enhancing lipid protrusions. These effects weaken the integrity of the outer membrane layer and are attributed mainly to the highly charged linker and JM regions of sybII.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Proteínas SNARE/química , Proteína 2 Associada à Membrana da Vesícula/química , Motivos de Aminoácidos/genética , Animais , Membrana Celular/metabolismo , Exocitose , Glicina/química , Bicamadas Lipídicas/metabolismo , Fusão de Membrana/genética , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
7.
J Neurosci ; 35(14): 5772-80, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855187

RESUMO

Ca(2+)-triggered release of neurotransmitters and hormones depends on soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) to drive the fusion of the vesicle and plasma membranes. The formation of the SNARE complex by the vesicle SNARE synaptobrevin 2 (syb2) and the two plasma membrane SNAREs syntaxin (syx) and SNAP-25 draws the two membranes together, but the events that follow membrane juxtaposition, and the ways that SNAREs remodel lipid membranes remain poorly understood. The SNAREs syx and syb2 have transmembrane domains (TMDs) that can exert force directly on the lipid bilayers. The TMD of syx influences fusion pore flux in a manner that suggests it lines the nascent fusion pore through the plasma membrane. The TMD of syb2 traverses the vesicle membrane and is the most likely partner to syx in completing a proteinaceous fusion pore through the vesicle membrane, but the role of this vesicle SNARE in fusion pores has yet to be tested. Here amperometry and conductance measurements were performed to probe the function of the syb2 TMD in fusion pores formed during catecholamine exocytosis in mouse chromaffin cells. Fusion pore flux was sensitive to the size and charge of TMD residues near the N terminus; fusion pore conductance was altered by substitutions at these sites. Unlike syx, the syb2 residues that influence fusion pore permeation fell along two α-helical faces of its TMD, rather than one. These results indicate a role for the syb2 TMD in nascent fusion pores, but in a very different structural arrangement from that of the syx TMD.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Vesículas Secretórias/genética , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Cálcio/metabolismo , Células Cromafins , Exocitose/efeitos dos fármacos , Exocitose/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Mutação/genética , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Cloreto de Potássio/farmacologia , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Transfecção , Proteína 2 Associada à Membrana da Vesícula/genética
8.
Cell Mol Life Sci ; 72(22): 4221-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26245303

RESUMO

Despite intensive research, it is still unclear how an immediate and profound acceleration of exocytosis is triggered by appropriate Ca(2+)-stimuli in presynaptic terminals. This is due to the fact that the molecular mechanisms of "docking" and "priming" reactions, which set up secretory vesicles to fuse at millisecond time scale, are extremely hard to study. Yet, driven by a fruitful combination of in vitro and in vivo analyses, our mechanistic understanding of Ca(2+)-triggered vesicle fusion has certainly advanced in the past few years. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. In particular, we will focus on the role of the small regulatory factor complexin whose function in Ca(2+)-dependent exocytosis has been controversially discussed for more than a decade. Special emphasis will also be laid on the functional relationship of complexin and synaptotagmin, as both proteins possibly act as allies and/or antagonists to govern SNARE-mediated exocytosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cálcio/metabolismo , Exocitose , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Humanos , Fusão de Membrana , Modelos Biológicos , Ligação Proteica , Proteínas SNARE/metabolismo , Sinaptotagminas/metabolismo
9.
J Neurosci ; 33(36): 14417-30, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005294

RESUMO

SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca(2+)-dependent by interactions with synaptotagmin-1. Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 × SNARE interactions at these sites are involved in regulating fast neurotransmitter release. Here, we have used electrophysiological techniques with high time-resolution to directly investigate the mechanistic ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused no further functional alterations in synaptotagmin-1-deficient cells, indicating that the central acidic patch indeed constitutes a mechanistically relevant synaptotagmin-1 interaction site. Moreover, our data show that the C-terminal binding interface only plays a subsidiary role in triggering but is required for the full size of the readily releasable pool. Intriguingly, we also found that mutation of synaptotagmin-1 interaction sites led to more pronounced phenotypes in the context of the adult neuronal isoform SNAP-25B than in the embryonic isoform SNAP-25A. Further experiments demonstrated that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle pool.


Assuntos
Transporte Proteico , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Vesículas Transportadoras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células Cultivadas , Células Cromafins/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética , Sinaptotagmina I/química , Sinaptotagmina I/genética
10.
J Neurosci ; 32(45): 15983-97, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136435

RESUMO

Trans-soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes formed between the SNARE motifs of synaptobrevin II, SNAP-25, and syntaxin play an essential role in Ca(2+)-regulated exocytosis. Apart from the well studied interactions of the SNARE domains, little is known about the functional relevance of other evolutionarily conserved structures in the SNARE proteins. Here, we show that substitution of two highly conserved tryptophan residues within the juxtamembrane domain (JMD) of the vesicular SNARE Synaptobrevin II (SybII) profoundly impairs priming of granules in mouse chromaffin cells without altering catecholamine release from single vesicles. Using molecular dynamic simulations of membrane-embedded SybII, we show that Trp residues of the JMD influence the electrostatic surface potential by controlling the position of neighboring lysine and arginine residues at the membrane-water interface. Our observations indicate a decisive role of the tryptophan moiety of SybII in keeping the vesicles in the release-ready state and support a model wherein tryptophan-mediated protein-lipid interactions assist in bridging the apposing membranes before fusion.


Assuntos
Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Triptofano/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Células Cultivadas , Exocitose/fisiologia , Camundongos , Camundongos Knockout , Proteínas SNARE/genética , Vesículas Secretórias/genética , Triptofano/genética , Proteína 2 Associada à Membrana da Vesícula/genética
11.
Proc Natl Acad Sci U S A ; 107(43): 18463-8, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937897

RESUMO

Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore remains elusive. Here we show that the ability of sybII to support exocytosis is inhibited by addition of one or two residues to the sybII C terminus depending on their energy of transfer from water to the membrane interface, following a Boltzmann distribution. These results suggest that following stimulation, the SNARE complex pulls the C terminus of sybII deeper into the vesicle membrane. We propose that this movement disrupts the vesicular membrane continuity leading to fusion pore formation. In contrast to current models, the experiments suggest that fusion pore formation begins with molecular rearrangements at the intravesicular membrane leaflet and not between the apposed cytoplasmic leaflets.


Assuntos
Fusão de Membrana/fisiologia , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/fisiologia , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Células Cultivadas , Células Cromafins/fisiologia , Exocitose/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Modelos Neurológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Neurotransmissores/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica , Proteína 2 Associada à Membrana da Vesícula/genética
12.
J Neurosci ; 31(15): 5659-72, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21490207

RESUMO

CNS myelination by oligodendrocytes requires directed transport of myelin membrane components and a timely and spatially controlled membrane expansion. In this study, we show the functional involvement of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (R-SNARE) proteins VAMP3/cellubrevin and VAMP7/TI-VAMP in myelin membrane trafficking. VAMP3 and VAMP7 colocalize with the major myelin proteolipid protein (PLP) in recycling endosomes and late endosomes/lysosomes, respectively. Interference with VAMP3 or VAMP7 function using small interfering RNA-mediated silencing and exogenous expression of dominant-negative proteins diminished transport of PLP to the oligodendroglial cell surface. In addition, the association of PLP with myelin-like membranes produced by oligodendrocytes cocultured with cortical neurons was reduced. We furthermore identified Syntaxin-4 and Syntaxin-3 as prime acceptor Q-SNAREs of VAMP3 and VAMP7, respectively. Analysis of VAMP3-deficient mice revealed no myelination defects. Interestingly, AP-3δ-deficient mocha mice, which suffer from impaired secretion of lysosome-related organelles and missorting of VAMP7, exhibit a mild dysmyelination characterized by reduced levels of select myelin proteins, including PLP. We conclude that PLP reaches the cell surface via at least two trafficking pathways with distinct regulations: (1) VAMP3 mediates fusion of recycling endosome-derived vesicles with the oligodendroglial plasma membrane in the course of the secretory pathway; (2) VAMP7 controls exocytosis of PLP from late endosomal/lysosomal organelles as part of a transcytosis pathway. Our in vivo data suggest that exocytosis of lysosome-related organelles controlled by VAMP7 contributes to myelin biogenesis by delivering cargo to the myelin membrane.


Assuntos
Proteína Proteolipídica de Mielina/metabolismo , Proteínas R-SNARE/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Endossomos/metabolismo , Ensaio de Imunoadsorção Enzimática , Exocitose/fisiologia , Feminino , Vetores Genéticos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Bainha de Mielina/metabolismo , Interferência de RNA , Transfecção
13.
Neuron ; 110(24): 4162-4175.e7, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36257322

RESUMO

In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.


Assuntos
Encéfalo , Canais de Cátion TRPC , Animais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Reprodutibilidade dos Testes , Encéfalo/metabolismo , Transmissão Sináptica , Mamíferos/metabolismo
14.
J Neurosci ; 30(31): 10272-81, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20685972

RESUMO

Neuronal communication relies on rapid and discrete intercellular signaling but neither the molecular mechanisms of the exocytotic machinery that define the timing of the action potential-evoked response nor those controlling the kinetics of transmitter release from single synaptic vesicles are known. Here, we investigate how interference with the putative force transduction between the complex-forming SNARE (soluble N-ethylamide-sensitive factor attachment protein receptor) domain and the transmembrane anchor of synaptobrevin II (SybII) affects action potential-evoked currents and spontaneous, quantal transmitter release at mouse hippocampal synapses. The results indicate that SybII-generated membrane stress effectively determines the kinetics of the action potential-evoked response and show that SNARE force modulates the concentration profile of cleft glutamate by controlling the rate of transmitter release from the single synaptic vesicle. Thus, multiple SybII actions determine the exquisite temporal regulation of neuronal signaling.


Assuntos
Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Células Cultivadas , Estimulação Elétrica , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
15.
Front Mol Neurosci ; 14: 728498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497491

RESUMO

Different families of auxiliary subunits regulate the function and trafficking of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the central nervous system. While a facilitatory role of auxiliary subunits in ER export and forward trafficking of newly synthesized AMPA receptors is firmly established, it is unclear whether auxiliary subunits also control endosomal receptor turnover in dendrites. Here, we manipulated the composition of AMPA receptor complexes in cultured hippocampal neurons by overexpression of two auxiliary subunits, transmembrane AMPAR regulatory protein (TARP) γ-8 or cysteine knot AMPAR-modulating protein (CKAMP) 44a, and monitored dendritic receptor cycling in live-cell imaging experiments. Receptor surface delivery was assayed using a modified AMPA receptor subunit carrying the pH-dependent fluorophore superecliptic pHluorin (SEP-GluA1), which regains its fluorescence during receptor exocytosis, when transiting from the acidic lumen of transport organelles to the neutral extracellular medium. Strikingly, we observed a dramatic reduction in the spontaneous fusion rate of AMPA receptor-containing organelles in neurons overexpressing either type of auxiliary subunit. An analysis of intracellular receptor distribution also revealed a decreased receptor pool in dendritic recycling endosomes, suggesting that incorporation of TARPγ-8 or CKAMP44a in receptor complexes generally diminishes cycling through the endosomal compartment. To directly analyze dendritic receptor turnover, we also generated a new reporter by N-terminal fusion of a self-labeling HaloTag to an AMPA receptor subunit (HaloTag-GluA1), which allows for selective, irreversible staining of surface receptors. Pulse chase-experiments with HaloTag-GluA1 indeed demonstrated that overexpression of TARPγ-8 or CKAMP44a reduces the constitutive internalization rate of surface receptors at extrasynaptic but not synaptic sites. Thus, our data point to a yet unrecognized regulatory function of TARPγ-8 and CKAMP44a, by which these structurally unrelated auxiliary subunits delay local recycling and increase surface lifetime of extrasynaptic AMPA receptors.

16.
Cell Rep ; 34(11): 108844, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730587

RESUMO

Store-operated Ca2+-entry (SOCE) regulates basal and receptor-triggered Ca2+ signaling with STIM proteins sensing the endoplasmic reticulum (ER) Ca2+ content and triggering Ca2+ entry by gating Orai channels. Although crucial for immune cells, STIM1's role in neuronal Ca2+ homeostasis is controversial. Here, we characterize a splice variant, STIM1B, which shows exclusive neuronal expression and protein content surpassing conventional STIM1 in cerebellum and of significant abundance in other brain regions. STIM1B expression results in a truncated protein with slower kinetics of ER-plasma membrane (PM) cluster formation and ICRAC, as well as reduced inactivation. In primary wild-type neurons, STIM1B is targeted by its spliced-in domain B to presynaptic sites where it converts classic synaptic depression into Ca2+- and Orai-dependent short-term synaptic enhancement (STE) at high-frequency stimulation (HFS). In conjunction with altered STIM1 splicing in human Alzheimer disease, our findings highlight STIM1 splicing as an important regulator of neuronal calcium homeostasis and of synaptic plasticity.


Assuntos
Molécula 1 de Interação Estromal/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Éxons/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína ORAI1/metabolismo , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
17.
Neuron ; 109(20): 3283-3297.e11, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672983

RESUMO

Deep brain temperature detection by hypothalamic warm-sensitive neurons (WSNs) has been proposed to provide feedback information relevant for thermoregulation. WSNs increase their action potential firing rates upon warming, a property that has been presumed to rely on the composition of thermosensitive ion channels within WSNs. Here, we describe a synaptic mechanism that regulates temperature sensitivity of preoptic WSNs and body temperature. Experimentally induced warming of the mouse hypothalamic preoptic area in vivo triggers body cooling. TRPM2 ion channels facilitate this homeostatic response and, at the cellular level, enhance temperature responses of WSNs, thereby linking WSN function with thermoregulation for the first time. Rather than acting within WSNs, we-unexpectedly-find TRPM2 to temperature-dependently increase synaptic drive onto WSNs by disinhibition. Our data emphasize a network-based interoceptive paradigm that likely plays a key role in encoding body temperature and that may facilitate integration of diverse inputs into thermoregulatory pathways.


Assuntos
Regulação da Temperatura Corporal/genética , Inibição Neural/genética , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Canais de Cátion TRPM/genética , Sensação Térmica/genética , Animais , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Interocepção/fisiologia , Camundongos , Camundongos Knockout , Área Pré-Óptica/citologia , Sinapses , Canais de Cátion TRPM/metabolismo
18.
J Biol Chem ; 284(49): 34423-32, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19815560

RESUMO

TRPC5 forms non-selective cation channels. Here we studied the role of internal Ca(2+) in the activation of murine TRPC5 heterologously expressed in human embryonic kidney cells. Cell dialysis with various Ca(2+) concentrations (Ca(2+)(i)) revealed a dose-dependent activation of TRPC5 channels by internal Ca(2+) with EC(50) of 635.1 and 358.2 nm at negative and positive membrane potentials, respectively. Stepwise increases of Ca(2+)(i) induced by photolysis of caged Ca(2+) showed that the Ca(2+) activation of TRPC5 channels follows a rapid exponential time course with a time constant of 8.6 +/- 0.2 ms at Ca(2+)(i) below 10 microM, suggesting that the action of internal Ca(2+) is a primary mechanism in the activation of TRPC5 channels. A second slow activation phase with a time to peak of 1.4 +/- 0.1 s was also observed at Ca(2+)(i) above 10 microM. In support of a Ca(2+)-activation mechanism, the thapsigargin-induced release of Ca(2+) from internal stores activated TRPC5 channels transiently, and the subsequent Ca(2+) entry produced a sustained TRPC5 activation, which in turn supported a long-lasting membrane depolarization. By co-expressing STIM1 plus ORAI1 or the alpha(1)C and beta(2) subunits of L-type Ca(2+) channels, we found that Ca(2+) entry through either calcium-release-activated-calcium or voltage-dependent Ca(2+) channels is sufficient for TRPC5 channel activation. The Ca(2+) entry activated TRPC5 channels under buffering of internal Ca(2+) with EGTA but not with BAPTA. Our data support the hypothesis that TRPC5 forms Ca(2+)-activated cation channels that are functionally coupled to Ca(2+)-selective ion channels through local Ca(2+) increases beneath the plasma membrane.


Assuntos
Canais Iônicos/química , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/química , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Quelantes/farmacologia , Humanos , Íons , Potenciais da Membrana , Camundongos , Modelos Biológicos , Canais de Cátion TRPC/fisiologia , Tapsigargina/química , Fatores de Tempo
19.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391794

RESUMO

Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.


Assuntos
Exocitose , Fusão de Membrana , Complexos Multiproteicos/fisiologia , Neurotransmissores/fisiologia , Fosfolipídeos/metabolismo , Proteínas SNARE/fisiologia , Proteína 2 Associada à Membrana da Vesícula/fisiologia , Animais , Cálcio/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mutantes/fisiologia , Ligação Proteica , Domínios Proteicos , Vesículas Secretórias/fisiologia
20.
Neuron ; 46(1): 75-88, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15820695

RESUMO

CAPS1 is thought to play an essential role in mediating exocytosis from large dense-core vesicles (LDCVs). We generated CAPS1-deficient (KO) mice and studied exocytosis in a model system for Ca2+-dependent LDCV secretion, the adrenal chromaffin cell. Adult heterozygous CAPS1 KO cells display a gene dosage-dependent decrease of CAPS1 expression and a concomitant reduction in the number of docked vesicles and secretion. Embryonic homozygous CAPS1 KO cells show a strong reduction in the frequency of amperometrically detectable release events of transmitter-filled vesicles, while the total number of fusing vesicles, as judged by capacitance recordings or total internal reflection microscopy, remains unchanged. We conclude that CAPS1 is required for an essential step in the uptake or storage of catecholamines in LDCVs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Catecolaminas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Secretórias/fisiologia , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Embrião de Mamíferos , Exocitose/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA