Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 185: 107535, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624524

RESUMO

Context memory formation is a complex process that requires transcription in many subregions of the brain including the dorsal hippocampus and retrosplenial cortex. One critical gene necessary for memory formation is the circadian gene Period1 (Per1), which has been shown to function in the dorsal hippocampus to modulate spatial memory in addition to its well-documented role in regulating the diurnal clock within the suprachiasmatic nucleus (SCN). We recently found that alterations in Per1 expression in the dorsal hippocampus can modulate spatial memory formation, with reduced hippocampal Per1 impairing memory and overexpression of Per1 ameliorating age-related impairments in spatial memory. Whether Per1 similarly functions within other memory-relevant brain regions is currently unknown. Here, to test whether Per1 is a general mechanism that modulates memory across the brain, we tested the role of Per1 in the retrosplenial cortex (RSC), a brain region necessary for context memory formation. First, we demonstrate that context fear conditioning drives a transient increase in Per1 mRNA expression within the anterior RSC that peaks 60 m after training. Next, using HSV-CRISPRi-mediated knockdown of Per1, we show that reducing Per1 within the anterior RSC before context fear acquisition impairs memory in both male and female mice. In contrast, overexpressing Per1 with either HSV-CRISPRa or HSV-Per1 before context fear acquisition drives a sex-specific memory impairment; males show impaired context fear memory whereas females are not affected by Per1 overexpression. Finally, as Per1 levels are known to rhythmically oscillate across the day/night cycle, we tested the possibility that Per1 overexpression might have different effects on memory depending on the time of day. In contrast to the impairment in memory we observed during the daytime, Per1 overexpression has no effect on context fear memory during the night in either male or female mice. Together, our results indicate that Per1 modulates memory in the anterior retrosplenial cortex in addition to its documented role in regulating memory within the dorsal hippocampus, although this role may differ between males and females.


Assuntos
Medo/fisiologia , Giro do Cíngulo/fisiologia , Consolidação da Memória , Proteínas Circadianas Period/fisiologia , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Condicionamento Clássico/fisiologia , Feminino , Edição de Genes , Giro do Cíngulo/metabolismo , Masculino , Consolidação da Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
2.
Front Mol Neurosci ; 17: 1429880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989157

RESUMO

Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. male mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) male mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young male mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.

3.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766057

RESUMO

Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.

4.
Neurobiol Aging ; 126: 77-90, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958103

RESUMO

Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.


Assuntos
Relógios Circadianos , Giro do Cíngulo , Camundongos , Animais , Masculino , Giro do Cíngulo/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/genética , Encéfalo/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/genética , Relógios Circadianos/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA