Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 527(7579): 508-11, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26560029

RESUMO

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.


Assuntos
Genoma de Planta/genética , Poaceae/genética , Análise de Sequência de DNA/métodos , Aclimatação/genética , Mapeamento de Sequências Contíguas , Desidratação , Dessecação , Secas , Genes de Plantas/genética , Genômica , Dados de Sequência Molecular
2.
Appl Opt ; 59(34): 10706-10718, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361890

RESUMO

We have fabricated, characterized, and analyzed a recently proposed non-mechanical beam steering device based on the Pancharatnam-Berry phase in a liquid crystal. The architecture of our proposed device employs a linear array of phase control elements (PCEs) to locally control the orientation of the liquid crystal director into a cycloidal pattern to deflect transmitted light. The PCEs are comprised of a fringe-field switching electrode structure that can provide a variable in-plane electric field. Detailed optimization of the director configuration is in a good agreement with experimental results showing that the half-wave retardation condition has been uniformly achieved across the aperture. Moreover, efficiency simulations using a finite-difference time-domain algorithm verify a high beam steering efficiency for the proposed device.

3.
Plant J ; 87(6): 535-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27228578

RESUMO

Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Rubus/genética , Rubus/microbiologia , Centrômero/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Frutas/genética , Frutas/fisiologia , Duplicação Gênica , Genômica/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rosaceae/genética , Análise de Sequência de DNA , Verticillium/patogenicidade
4.
Plant Cell Environ ; 40(10): 2292-2306, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730594

RESUMO

Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants.


Assuntos
Craterostigma/fisiologia , Dessecação , Sementes/fisiologia , Adaptação Fisiológica/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Craterostigma/genética , Craterostigma/ultraestrutura , Desidratação , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Estresse Fisiológico , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Água
5.
Plant J ; 79(3): 361-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888695

RESUMO

Brachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.


Assuntos
Brachypodium/genética , Variação Genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Secas , Transcriptoma/genética
6.
Appl Opt ; 53(6): 1124-31, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24663311

RESUMO

Two design approaches (multicell and addition of phase resets in single cell) are introduced to optimize the performances of tunable refractive liquid crystal lenses, including improvements on the switching speed, optical power, and the off-axis, wide-angle imaging performance. Key parameters and advantages for each method are discussed, and their effects on the performance are demonstrated in detail with numerical calculations.

7.
Opt Express ; 21(7): 8371-81, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571926

RESUMO

A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.


Assuntos
Eletrodos , Lentes , Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Refratometria/instrumentação , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Appl Opt ; 52(9): 1978-86, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23518745

RESUMO

A comprehensive analysis of fundamental factors and their effects on the performance of liquid crystal (LC)-based lenses is given. The analysis adopts numerical LC director and electric field simulation, as well as scalar diffraction theory for calculating the lens performance considering different variable factors. A high-efficiency LC lens with concentric electrode rings is fabricated for verifying and enriching the analysis. The measurement results are in close agreement with the analysis, and a summary of key factors is given with their quantitative contributions to the efficiency.

9.
Nat Commun ; 9(1): 13, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29296019

RESUMO

Plant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109 Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S. lepidophylla plant, revealing extensive structural variation. We observe numerous haplotype-specific deletions consisting of largely repetitive and heavily methylated sequences, with enrichment in young Gypsy LTR retrotransposons. Such elements are active but rapidly deleted, suggesting "bloat and purge" to maintain a small genome size. Unlike all other land plant lineages, Selaginella has no evidence of a whole-genome duplication event in its evolutionary history, but instead shows unique tandem gene duplication patterns reflecting adaptation to extreme drying. Gene expression changes during desiccation in S. lepidophylla mirror patterns observed across angiosperm resurrection plants.


Assuntos
Evolução Biológica , Genoma de Planta , Selaginellaceae/genética , Água/fisiologia , Dessecação , Secas , Haplótipos
10.
Int J Genomics ; 2016: 2374610, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27376076

RESUMO

Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA