Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 44(4): 1909-23, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26740584

RESUMO

Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that regulates gene expression and mRNA quality. A complex network of macromolecular interactions regulates NMD initiation, which is only partially understood. According to prevailing models, NMD begins by the assembly of the SURF (SMG1-UPF1-eRF1-eRF3) complex at the ribosome, followed by UPF1 activation by additional factors such as UPF2 and UPF3. Elucidating the interactions between NMD factors is essential to comprehend NMD, and here we demonstrate biochemically and structurally the interaction between human UPF2 and eukaryotic release factor 3 (eRF3). In addition, we find that UPF2 associates with SURF and ribosomes in cells, in an UPF3-independent manner. Binding assays using a collection of UPF2 truncated variants reveal that eRF3 binds to the C-terminal part of UPF2. This region of UPF2 is partially coincident with the UPF3-binding site as revealed by electron microscopy of the UPF2-eRF3 complex. Accordingly, we find that the interaction of UPF2 with UPF3b interferes with the assembly of the UPF2-eRF3 complex, and that UPF2 binds UPF3b more strongly than eRF3. Together, our results highlight the role of UPF2 as a platform for the transient interactions of several NMD factors, including several components of SURF.


Assuntos
Complexos Multiproteicos/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Códon sem Sentido/genética , Eucariotos/genética , Éxons , Humanos , Complexos Multiproteicos/genética , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Proteínas de Ligação a RNA , Transativadores/genética , Fatores de Transcrição/genética
2.
Genes Dev ; 24(21): 2440-50, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20930030

RESUMO

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades mRNAs containing premature stop codons (PTCs). In vertebrates, PTCs trigger efficient NMD when located upstream of an exon junction complex (EJC). Degradation of PTC-containing mRNAs requires the endonucleolytic activity of SMG6, a conserved NMD factor; nevertheless, the precise role for the EJC in NMD and how the SMG6 endonuclease is recruited to NMD targets have been unclear. Here we show that SMG6 interacts directly with the EJC via two conserved EJC-binding motifs (EBMs). We further show that the SMG6-EJC interaction is required for NMD. Our results reveal an unprecedented role for the EJC in recruiting the SMG6 endonuclease to NMD targets. More generally, our findings identify the EBM as a protein motif present in a handful of proteins, and suggest that EJCs establish multiple and mutually exclusive interactions with various protein partners, providing a plausible explanation for the myriad functions performed by this complex in post-transcriptional mRNA regulation.


Assuntos
Motivos de Aminoácidos/genética , Éxons/genética , Estabilidade de RNA/genética , Telomerase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Códon sem Sentido , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Telomerase/genética
3.
Proc Natl Acad Sci U S A ; 110(48): E4611-8, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218557

RESUMO

DEAD-box proteins are involved in all aspects of RNA processing. They bind RNA in an ATP-dependent manner and couple ATP hydrolysis to structural and compositional rearrangements of ribonucleoprotein particles. Conformational control is a major point of regulation for DEAD-box proteins to act on appropriate substrates and in a timely manner in vivo. Binding partners containing a middle domain of translation initiation factor 4G (MIF4G) are emerging as important regulators. Well-known examples are eIF4G and Gle1, which bind and activate the DEAD-box proteins eIF4A and Dbp5. Here, we report the mechanism of an inhibiting MIF4G domain. We determined the 2.0-Å resolution structure of the complex of human eIF4AIII and the MIF4G domain of the splicing factor Complexed With Cef1 (CWC22), an essential prerequisite for exon junction complex assembly by the splicing machinery. The CWC22 MIF4G domain binds both RecA domains of eIF4AIII. The mode of RecA2 recognition is similar to that observed in the activating complexes, yet is specific for eIF4AIII. The way the CWC22 MIF4G domain latches on the eIF4AIII RecA1 domain is markedly different from activating complexes. In the CWC22-eIF4AIII complex, the RNA-binding and ATP-binding motifs of the two RecA domains do not face each other, as would be required in the active state, but are in diametrically opposite positions. The binding mode of CWC22 to eIF4AIII reveals a facet of how MIF4G domains use their versatile structural frameworks to activate or inhibit DEAD-box proteins.


Assuntos
Proteínas de Transporte/química , RNA Helicases DEAD-box/química , Fator de Iniciação 4A em Eucariotos/química , Modelos Moleculares , Complexos Multiproteicos/química , Domínios e Motivos de Interação entre Proteínas , Cromatografia em Gel , Cristalização , Escherichia coli , Humanos , Proteínas Nucleares , Peptidilprolil Isomerase , Proteínas de Ligação a RNA
4.
Proc Natl Acad Sci U S A ; 107(22): 10050-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479275

RESUMO

In mammals, Up-frameshift proteins (UPFs) form a surveillance complex that interacts with the exon junction complex (EJC) to elicit nonsense-mediated mRNA decay (NMD). UPF3b is the component of the surveillance complex that bridges the interaction with the EJC. Here, we report the 3.4 A resolution crystal structure of a minimal UPF3b-EJC assembly, consisting of the interacting domains of five proteins (UPF3b, MAGO, Y14, eIF4AIII, and Barentsz) together with RNA and adenylyl-imidodiphosphate. Human UPF3b binds with the C-terminal domain stretched over a composite surface formed by eIF4AIII, MAGO, and Y14. Residues that affect NMD when mutated are found at the core interacting surfaces, whereas differences between UPF3b and UPF3a map at peripheral interacting residues. Comparison with the binding mode of the protein PYM underscores how a common molecular surface of MAGO and Y14 recognizes different proteins acting at different times in the same pathway. The binding mode to eIF4AIII identifies a surface hot spot that is used by different DEAD-box proteins to recruit their regulators.


Assuntos
Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Células HeLa , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
FEBS J ; 282(5): 850-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25645110

RESUMO

RNA helicases are present in all domains of life and participate in almost all aspects of RNA metabolism, from transcription and processing to translation and decay. The diversity of pathways and substrates that they act on is reflected in the diversity of their individual functions, structures, and mechanisms. However, RNA helicases also share hallmark properties. At the functional level, they promote rearrangements of RNAs and RNP particles by coupling nucleic acid binding and release with ATP hydrolysis. At the molecular level, they contain two domains homologous to the bacterial RecA recombination protein. This conserved catalytic core is flanked by additional domains, which typically regulate the ATPase activity in cis. Binding to effector proteins targets or regulates the ATPase activity in trans. Structural and biochemical studies have converged on the plasticity of RNA helicases as a fundamental property that is used to control their timely activation in the cell. In this review, we focus on the conformational regulation of conserved eukaryotic RNA helicases.


Assuntos
Adenosina Trifosfatases/química , RNA Helicases/química , Adenosina Trifosfatases/metabolismo , Domínio Catalítico , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Células Eucarióticas/enzimologia , Modelos Moleculares , Conformação Proteica , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática
6.
Nat Struct Mol Biol ; 19(5): 498-505, S1-2, 2012 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-22522823

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that degrades aberrant mRNAs containing premature termination codons (PTCs). NMD is triggered upon the assembly of the UPF surveillance complex near a PTC. In humans, UPF assembly is prompted by the exon junction complex (EJC). We investigated the molecular architecture of the human UPF complex bound to the EJC by cryo-EM and using positional restraints from additional EM, MS and biochemical interaction data. The heptameric assembly is built around UPF2, a scaffold protein with a ring structure that closes around the CH domain of UPF1, keeping the helicase region in an accessible and unwinding-competent state. UPF2 also positions UPF3 to interact with the EJC. The geometry is such that this transient complex poises UPF1 to elicit helicase activity toward the 3' end of the mRNP.


Assuntos
Regiões 3' não Traduzidas , Microscopia Crioeletrônica , Éxons , Complexos Multiproteicos/química , RNA Mensageiro/química , Transativadores/química , Códon sem Sentido , Microscopia Crioeletrônica/métodos , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
7.
EMBO J ; 25(11): 2465-74, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16710298

RESUMO

Polycomb group proteins Ring1b and Bmi1 (B-cell-specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3-ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro. The N-terminal Ring-domains are sufficient for this activity and Ring1a can replace Ring1b. E2 enzymes UbcH5a, b, c or UbcH6 support this activity with varying processivity and selectivity. All four E2s promote autoubiquitination of Ring1b without affecting E3-ligase activity. We solved the crystal structure of the Ring-Ring heterodimeric complex of Ring1b and Bmi1. In the structure the arrangement of the Ring-domains is similar to another H2A E3 ligase, the BRCA1/BARD1 complex, but complex formation depends on an N-terminal arm of Ring1b that embraces the Bmi1 Ring-domain. Mutation of a critical residue in the E2/E3 interface shows that catalytic activity resides in Ring1b and not in Bmi1. These data provide a foundation for understanding the critical enzymatic activity at the core of the PRC1 polycomb complex, which is implicated in stem cell maintenance and cancer.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Feminino , Histonas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Alinhamento de Sequência , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1232-42, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17001100

RESUMO

Structure determination and functional characterization of macromolecular complexes requires the purification of the different subunits in large quantities and their assembly into a functional entity. Although isolation and structure determination of endogenous complexes has been reported, much progress has to be made to make this technology easily accessible. Co-expression of subunits within hosts such as Escherichia coli and insect cells has become more and more amenable, even at the level of high-throughput projects. As part of SPINE (Structural Proteomics In Europe), several laboratories have investigated the use co-expression techniques for their projects, trying to extend from the common binary expression to the more complicated multi-expression systems. A new system for multi-expression in E. coli and a database system dedicated to handle co-expression data are described. Results are also reported from various case studies investigating different methods for performing co-expression in E. coli and insect cells.


Assuntos
Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Proteínas Recombinantes/biossíntese , Algoritmos , Animais , Segurança Computacional , Simulação por Computador , Quinases Ciclina-Dependentes/metabolismo , Reparo do DNA , Bases de Dados Genéticas , Escherichia coli/metabolismo , Vetores Genéticos , Gestão da Informação , Insetos/metabolismo , RNA/biossíntese , RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Fator de Transcrição TFIID/genética , Ubiquitina-Proteína Ligases/genética , Quinase Ativadora de Quinase Dependente de Ciclina
9.
J Biol Chem ; 278(29): 27149-59, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12719429

RESUMO

RhoGTPases are central switches in all eukaryotic cells. There are at least two known families of guanine nucleotide exchange factors that can activate RhoGTPases: the Dbl-like eukaryotic G nucleotide exchange factors and the SopE-like toxins of pathogenic bacteria, which are injected into host cells to manipulate signaling. Both families have strikingly different sequences, structures, and catalytic core elements. This suggests that they have emerged by convergent evolution. Nevertheless, both families of G nucleotide exchange factors also share some similarities: (a) both rearrange the G nucleotide binding site of RhoGTPases into virtually identical conformations, and (b) two SopE residues (Gln-109SopE and Asp-124SopE) engage Cdc42 in a similar way as equivalent residues of Dbl-like G nucleotide exchange factors (i.e. Asn-810Dbs and Glu-639Dbs). The functional importance of these observations has remained unclear. Here, we have analyzed the effect of amino acid substitutions at selected SopE residues implicated in catalysis (Asp-124SopE, Gln-109SopE, Asp-103SopE, Lys-198SopE, and Gly-168SopE) on in vitro catalysis of G nucleotide release from Cdc42 and on in vivo activity. Substitutions at Asp-124SopE, Gln-109SopE, and Gly-168SopE severely reduced the SopE activity. Slight defects were observed with Asp-103SopE variants, whereas Lys-198SopE was not found to be required in vitro or in vivo. Our results demonstrate that G nucleotide exchange by SopE involves both catalytic elements unique to the SopE family (i.e. 166GAGA169 loop, Asp-103SopE) and amino acid contacts resembling those of key residues of Dbl-like guanine nucleotide exchange factors. Therefore, besides all of the differences, the catalytic mechanisms of the SopE and the Dbl families share some key functional aspects.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Sequência de Bases , Sítios de Ligação/genética , Células COS , DNA Bacteriano/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Homologia de Sequência de Aminoácidos , Proteína cdc42 de Ligação ao GTP/genética
10.
EMBO J ; 21(13): 3286-95, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12093730

RESUMO

The bacterial enteropathogen Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. One of these translocated Salmonella toxins, SopE, can activate Cdc42 in a Dbl-like fashion despite its lack of sequence similarity to Dbl-like proteins, the Rho-specific eukaryotic guanine nucleotide exchange factors. To elucidate the mechanism of SopE-mediated guanine nucleotide exchange, we have analyzed the structure of the complex between a catalytic fragment of SopE and Cdc42. SopE binds to and locks the switch I and switch II regions of Cdc42 in a conformation that promotes guanine nucleotide release. This conformation is strikingly similar to that of Rac1 in complex with the eukaryotic Dbl-like exchange factor Tiam1. However, the catalytic domain of SopE has an entirely different architecture from that of Tiam1 and interacts with the switch regions via different amino acids. Therefore, SopE represents the first example of a non-Dbl-like protein capable of inducing guanine nucleotide exchange in Rho family proteins.


Assuntos
Proteínas de Bactérias/química , Proteína cdc42 de Ligação ao GTP/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Evolução Molecular , Fatores de Troca do Nucleotídeo Guanina , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Salmonella typhimurium/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Relação Estrutura-Atividade , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA