Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21107, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273691

RESUMO

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E. coli bacteria are sorted from nanoparticles and preconcentrated on a microfluidic chip with six integrated pneumatic valves (sub-100 nL dead volume) using hydrophilic PVDF filter with 0.45 µm pore diameter. The proposed on-chip automatic sorting sequence includes a sample filtration, dead volume washout and retentate backflush in reverse flow. We showed that pulse backflush mode and volume control can dramatically increase microparticles sorting and preconcentration efficiency. We demonstrate that at the optimal pulse backflush regime a separation efficiency of E. coli cells up to 81.33% at a separation throughput of 120.45 µL/min can be achieved. A trimmed mode when the backflush volume is twice smaller than the initial sample results in a preconcentration efficiency of E. coli cells up to 121.96% at a throughput of 80.93 µL/min. Finally, we propose a cyclic on-chip preconcentration method which demonstrates E. coli cells preconcentration efficiency of 536% at a throughput of 1.98 µL/min and 294% preconcentration efficiency at a 10.9 µL/min throughput.


Assuntos
Escherichia coli/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Filtração , Limite de Detecção
2.
Anal Chem ; 76(2): 474-8, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14719900

RESUMO

We propose to form nanoelectrode arrays by deposition of the electrocatalyst through lyotropic liquid crystalline templates onto inert electrode support. Whereas Prussian Blue is known to be a superior electrocatalyst in hydrogen peroxide reduction, carbon materials used as electrode support demonstrate only a minor activity. We report on the possibility for nanostructuring of Prussian Blue by its electrochemical deposition through lyotropic liquid crystalline templates, which is noticed from atomic force microscopy images of the resulting surfaces. The resulting Prussian Blue based nanoelectrode arrays in flow injection analysis mode demonstrate a sub-part-per-billion detection limit (1 x 10(-)(8) M) and a linear calibration range starting exactly from the detection limit and extending over 6 orders of magnitude of H(2)O(2) concentrations (1 x 10(-)(8) to 1 x 10(-)(2) M), which are the most advantageous analytical performances in hydrogen peroxide electroanalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA