Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Parasitology ; 142(5): 719-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25498372

RESUMO

Anthropogenic activities are having profound impacts on species interactions, with further consequences for populations and communities. We investigated the influence that anthropogenic eutrophication has on the prevalence of the parasitic tapeworm Schistocephalus solidus in threespine stickleback Gasterosteus aculeatus populations. We caught stickleback from four areas along the coast of Finland, and within each area from one undisturbed and one eutrophied habitat. We found the prevalence of the parasite to be lower in the eutrophied habitats at the start of the breeding season, probably because of fewer piscivorous birds that transmit the parasite. However, while the prevalence of the parasite declined across the season in the undisturbed habitat, it did less so in eutrophied habitats. We discuss different processes that could be behind the differences, such as lower predation rate on infected fish, higher food availability and less dispersal in eutrophied habitats. We found no effect of eutrophication on the proportion of infected stickleback that entered reproductive condition. Together with earlier findings, this suggests that eutrophication increases the proportion of infected stickleback that reproduce. This could promote the evolution of less parasite resistant populations, with potential consequences for the viability of the interacting parties of the host-parasite system.


Assuntos
Infecções por Cestoides/veterinária , Eutrofização , Doenças dos Peixes/parasitologia , Atividades Humanas , Smegmamorpha/parasitologia , Animais , Cruzamento , Infecções por Cestoides/epidemiologia , Interações Hospedeiro-Parasita , Humanos , Prevalência , Estações do Ano
2.
Parasitology ; 141(4): 462-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24477175

RESUMO

Host-parasite interactions are an integral part of ecosystems that influence both ecological and evolutionary processes. Humans are currently altering environments the world over, often with drastic consequences for host-parasite interactions and the prevalence of parasites. The mechanisms behind the changes are, however, poorly known. Here, we explain how host-parasite interactions depend on two crucial steps--encounter rate and host-parasite compatibility--and how human activities are altering them and thereby host-parasite interactions. By drawing on examples from the literature, we show that changes in the two steps depend on the influence of human activities on a range of factors, such as the density and diversity of hosts and parasites, the search strategy of the parasite, and the avoidance strategy of the host. Thus, to unravel the mechanisms behind human-induced changes in host-parasite interactions, we have to consider the characteristics of all three parts of the interaction: the host, the parasite and the environment. More attention should now be directed to unfold these mechanisms, focusing on effects of environmental change on the factors that determine encounter rate and compatibility. We end with identifying several areas in urgent need of more investigations.


Assuntos
Resistência à Doença , Meio Ambiente , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Animais , Humanos , Estágios do Ciclo de Vida , Parasitos/crescimento & desenvolvimento , Parasitos/patogenicidade , Densidade Demográfica , Virulência
3.
Trends Parasitol ; 39(3): 181-190, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658057

RESUMO

There is a global rise in anthropogenic noise and a growing awareness of its negative effects on wildlife, but to date the consequences for wildlife diseases have received little attention. In this paper, we discuss how anthropogenic noise can affect the occurrence and severity of infectious wildlife diseases. We argue that there is potential for noise impacts at three main stages of pathogen transmission and disease development: (i) the probability of preinfection exposure, (ii) infection upon exposure, and (iii) severity of postinfection consequences. We identify potential repercussions of noise pollution effects for wildlife populations and call for intensifying research efforts. We provide an overview of knowledge gaps and outline avenues for future studies into noise impacts on wildlife diseases.


Assuntos
Animais Selvagens , Ruído , Animais , Ruído/efeitos adversos
4.
Curr Zool ; 61(6): 991-995, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32256535

RESUMO

Human-induced growth of macro-algae is often assumed to increase trematode infections in fishes by increasing the abundance and condition of the parasite's intermediate host - snails - as this can boost the release of trematode larvae, cercariae, from the intermediate hosts. However, macro-algae can also impose barriers to the transmission of cercariae and reduce infections. We investigated whether an increased growth of filamentous algae affects the transmission of Diplostomum pseudospathaceum cercariae to the threespine stickleback Gasterosteus aculeatus, a common fish in eutrophied shallow waters. We exposed sticklebacks to trematode cercariae in the absence and presence of artificial filamentous algae, and recorded effects on the proportion of sticklebacks infected and the number of encysted metacercariae per fish. No significant effect of artificial algae on cercariae transmission was detected. However, the body size and the sex of the sticklebacks were strongly correlated with the number of encysted metacercariae per infected fish, with females and larger individuals being more infected. We discuss different factors that could have caused the difference in parasite transmission, including sex-related differences in body size and behaviour of sticklebacks.

5.
Sci Rep ; 5: 18548, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26685761

RESUMO

Minnow traps are commonly used in the stickleback (Gasterostidae) fishery, but the potential differences in catch per unit effort (CPUE) among different minnow trap models are little studied. We compared the CPUE of four different minnow trap models in field experiments conducted with three-spined sticklebacks (Gasterosteus aculeatus). Marked (up to 26 fold) differences in median CPUE among different trap models were observed. Metallic uncoated traps yielded the largest CPUE (2.8 fish/h), followed by metallic black nylon-coated traps (1.3 fish/h). Collapsible canvas traps yielded substantially lower CPUEs (black: 0.7 fish/h; red: 0.1 fish/h) than the metallic traps. Laboratory trials further revealed significant differences in escape probabilities among the different trap models. While the differences in escape probability can explain at least part of the differences in CPUE among the trap models (e.g. high escape rate and low CPUE in red canvas traps), discrepancies between model-specific CPUEs and escape rates suggests that variation in entrance rate also contributes to the differences in CPUE. In general, and in accordance with earlier data on nine-spined stickleback (Pungitius pungitius) trapping, the results suggest that uncoated metallic (Gee-type) traps are superior to the other commonly used minnow trap models in stickleback fisheries.


Assuntos
Cyprinidae , Pesqueiros , Smegmamorpha , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA