RESUMO
Background Long COVID occurs at a lower frequency in children and adolescents than in adults. Morphologic and free-breathing phase-resolved functional low-field-strength MRI may help identify persistent pulmonary manifestations after SARS-CoV-2 infection. Purpose To characterize both morphologic and functional changes of lung parenchyma at low-field-strength MRI in children and adolescents with post-COVID-19 condition compared with healthy controls. Materials and Methods Between August and December 2021, a cross-sectional clinical trial using low-field-strength MRI was performed in children and adolescents from a single academic medical center. The primary outcome was the frequency of morphologic changes at MRI. Secondary outcomes included MRI-derived functional proton ventilation and perfusion parameters. Clinical symptoms, the duration from positive reverse transcriptase-polymerase chain reaction test result, and serologic parameters were compared with imaging results. Nonparametric tests for pairwise and corrected tests for groupwise comparisons were applied to assess differences in healthy controls, recovered participants, and those with long COVID. Results A total of 54 participants after COVID-19 infection (mean age, 11 years ± 3 [SD]; 30 boys [56%]) and nine healthy controls (mean age, 10 years ± 3; seven boys [78%]) were included: 29 (54%) in the COVID-19 group had recovered from infection and 25 (46%) were classified as having long COVID on the day of enrollment. Morphologic abnormality was identified in one recovered participant. Both ventilated and perfused lung parenchyma (ventilation-perfusion [V/Q] match) was higher in healthy controls (81% ± 6.1) compared with the recovered group (62% ± 19; P = .006) and the group with long COVID (60% ± 20; P = .003). V/Q match was lower in patients with time from COVID-19 infection to study participation of less than 180 days (63% ± 20; P = .03), 180-360 days (63% ± 18; P = .03), and 360 days (41% ± 12; P < .001) as compared with the never-infected healthy controls (81% ± 6.1). Conclusion Low-field-strength MRI showed persistent pulmonary dysfunction in children and adolescents who recovered from COVID-19 and those with long COVID. Clinical trial registration no. NCT04990531 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Paltiel in this issue.
Assuntos
COVID-19 , Adolescente , Adulto , Criança , Humanos , Masculino , Estudos Transversais , Pulmão/diagnóstico por imagem , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2RESUMO
BACKGROUND: Spinal muscular atrophy is a progressive neuromuscular disorder and among the most frequent genetic causes of infant mortality. While recent advancements in gene therapy provide the potential to ameliorate the disease severity, there is currently no modality in clinical use to visualize dynamic pathophysiological changes in disease progression and regression after therapy. METHODS: In this prospective diagnostic clinical study, ten pediatric patients with spinal muscular atrophy and ten age- and sex-matched controls have been examined with three-dimensional optoacoustic imaging and clinical standard examinations to compare the spectral profile of muscle tissue and correlate it with motor function (ClinicalTrials.gov: NCT04115475). FINDINGS: We observed a reduced optoacoustic signal in muscle tissue of pediatric patients with spinal muscular atrophy. The reduction in signal intensity correlated with disease severity as assessed by grayscale ultrasound and standard motor function tests. In a cohort of patients who received disease-modifying therapy prior to the study, the optoacoustic signal intensity was similar to healthy controls. CONCLUSIONS: This translational study provides early evidence that three-dimensional optoacoustic imaging could have clinical implications in monitoring disease activity in spinal muscular atrophy. By visualizing and quantifying molecular changes in muscle tissue, disease progression and effects of gene therapy can be assessed in real time. FUNDING: The project was funded by ELAN Fonds (P055) at the University Hospital of the Friedrich-Alexander-Universität (FAU) Erlangen-Nurnberg to A.P.R.
Assuntos
Imageamento Tridimensional , Atrofia Muscular Espinal , Técnicas Fotoacústicas , Humanos , Feminino , Masculino , Estudos Prospectivos , Pré-Escolar , Imageamento Tridimensional/métodos , Técnicas Fotoacústicas/métodos , Criança , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/terapia , Lactente , Progressão da Doença , Estudos de Casos e Controles , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Adolescente , Atrofias Musculares Espinais da Infância/diagnóstico por imagem , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/terapia , Atrofias Musculares Espinais da Infância/fisiopatologia , Atrofias Musculares Espinais da Infância/diagnósticoRESUMO
To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.
Assuntos
Técnicas Fotoacústicas , Tomografia , Humanos , Processamento de Imagem Assistida por Computador/métodosRESUMO
The analysis of vascular morphology and functionality enables the assessment of disease activity and therapeutic effects in various pathologies. Raster-scanning optoacoustic mesoscopy (RSOM) is an imaging modality that enables the visualization of superficial vascular networks in vivo. In murine models of colitis, deep vascular networks in the colon wall can be visualized by transrectal absorber guide raster-scanning optoacoustic mesoscopy (TAG-RSOM). In order to accelerate the implementation of this technology in translational studies of inflammatory bowel disease, an image-processing pipeline for TAG-RSOM data has been developed. Using optoacoustic data from a murine model of chemically-induced colitis, different image segmentation methods are compared for visualization and quantification of deep vascular patterns in terms of vascular network length and complexity, blood volume, and vessel diameter. The presented image-processing pipeline for TAG-RSOM enables label-free in vivo assessment of changes in the vascular network in murine colitis with broad applications for inflammatory bowel disease research.
RESUMO
Multispectral optoacoustic tomography (MSOT) allows non-invasive molecular disease activity assessment in adults with inflammatory bowel disease (IBD). In this prospective pilot-study, we investigated, whether increased levels of MSOT haemoglobin parameters corresponded to inflammatory activity in paediatric IBD patients, too. 23 children with suspected IBD underwent MSOT of the terminal ileum and sigmoid colon with standard validation (e.g. endoscopy). In Crohn`s disease (CD) and ulcerative colitis (UC) patients with endoscopically confirmed disease activity, MSOT total haemoglobin (HbT) signals were increased in the terminal ileum of CD (72.1 ± 13.0 a.u. vs. 32.9 ± 15.4 a.u., p = 0.0049) and in the sigmoid colon of UC patients (62.9 ± 13.8 a.u. vs. 35.1 ± 16.3 a.u., p = 0.0311) as compared to controls, respectively. Furthermore, MSOT haemoglobin parameters correlated well with standard disease activity assessment (e.g. SES-CD and MSOT HbT (rs =0.69, p = 0.0075). Summarizing, MSOT is a novel technology for non-invasive molecular disease activity assessment in paediatric patients with inflammatory bowel disease.
RESUMO
BACKGROUND AND PURPOSE: Novel light- and sound-based technologies like multispectral optoacoustic tomography (MSOT) with co-registered reflected-ultrasound computed tomography (RUCT) could add additional value to conventional ultrasound (US) for disease phenotyping in pediatric spinal muscular atrophy (SMA). The aim of this study was to investigate the quality of RUCT compared to US for qualitative and quantitative assessment of imaging neuromuscular disorders. METHODS: Subanalyzing the MSOT SMA study, 288 RUCT and 276 US images from 10 SMA patients (mean age 9.0 ± 3.7) and 10 gender- and age-matched healthy volunteers (HV; mean age 8.7 ± 4.3) were analyzed for quantitative (grayscale levels [GSLs]) and qualitative (echogenicity, distribution pattern, Heckmatt scale, and muscle texture) muscle changes. RUCT and US measures were further correlated with clinical standard motor outcomes. RESULTS: Quantitative agreement using GSLs revealed significantly higher GSLs in muscles of SMA patients compared to healthy muscles in both techniques (US mean GSL [SD] SMA vs. HV: 110.70 [27.8] vs. 68.85 [19.2], p < .0001; RUCT mean GSL [SD] SMA vs. HV: 91.81 [21.8] vs. 59.86 [8.2], p < .0001) with good correlation with motor outcome tests, respectively. Qualitative agreement between methods for muscle composition was excellent for differentiation of pathological versus healthy muscles, echogenicity, and distribution pattern, moderate for Heckmatt scale, and poor for muscle texture. CONCLUSIONS: The data suggest that RUCT may allow the assessment of basic qualitative and quantitative measures for muscular diseases with comparable results to conventional US.
Assuntos
Atrofia Muscular Espinal , Humanos , Criança , Pré-Escolar , Adolescente , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/patologia , Músculo Esquelético/diagnóstico por imagem , Tomografia Computadorizada por Raios X , UltrassonografiaRESUMO
Multispectral optoacoustic tomography (MSOT) holds great promise as a non-invasive diagnostic tool for inflammatory bowel diseases. Yet, reliability and the impact of physiological processes during fasting and after food intake on optoacoustic signals have not been studied. In the present investigator initiated trial (NCT05160077) the intestines of ten healthy subjects were examined by MSOT at eight timepoints on two days, one fasting and one after food intake. While within-timepoint and within-day reproducibility were good for single wavelength 800â¯nm and total hemoglobin (ICC 0.722-0.956), between-day reproducibility was inferior (ICC -0.137 to 0.438). However, temporal variability was smaller than variation between individuals (coefficients of variation 8.9%-33.7% vs. 17.0%-48.5%). After food intake and consecutive increased intestinal circulation, indicated by reduced resistance index of simultaneous Doppler ultrasound, optoacoustic signals did not alter significantly. In summary, this study demonstrates high reliability and temporal stability of MSOT for imaging the human intestine during fasting and after food intake.
RESUMO
Optoacoustic imaging (OAI) enables microscale imaging of endogenous chromophores such as hemoglobin at significantly higher penetration depths compared to other optical imaging technologies. Raster-scanning optoacoustic mesoscopy (RSOM) has recently been shown to identify superficial microvascular changes associated with human skin pathologies. In animal models, the imaging depth afforded by RSOM can enable entirely new capabilities for noninvasive imaging of vascular structures in the gastrointestinal tract, but exact localization of intra-abdominal organs is still elusive. Herein the development and application of a novel transrectal absorber guide for RSOM (TAG-RSOM) is presented to enable accurate transabdominal localization and assessment of colonic vascular networks in vivo. The potential of TAG-RSOM is demonstrated through application during mild and severe acute colitis in mice. TAG-RSOM enables visualization of transmural vascular networks, with changes in colon wall thickness, blood volume, and OAI signal intensities corresponding to colitis-associated inflammatory changes. These findings suggest TAG-RSOM can provide a novel monitoring tool in preclinical IBD models, refining animal procedures and underlines the capabilities of such technologies to address inflammatory bowel diseases in humans.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Pele , Imagem Óptica , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Colite/diagnóstico por imagemRESUMO
Real-time imaging and functional assessment of the intestinal tract and its transit pose a significant challenge to conventional clinical diagnostic methods. Multispectral optoacoustic tomography (MSOT), a molecular-sensitive imaging technology, offers the potential to visualize endogenous and exogenous chromophores in deep tissue. Herein, a novel approach using the orally administered clinical-approved fluorescent dye indocyanine green (ICG) for bedside, non-ionizing evaluation of gastrointestinal passage is presented. The authors are able to show the detectability and stability of ICG in phantom experiments. Furthermore, ten healthy subjects underwent MSOT imaging at multiple time points over eight hours after ingestion of a standardized meal with and without ICG. ICG signals can be visualized and quantified in different intestinal segments, while its excretion is confirmed by fluorescent imaging of stool samples. These findings indicate that contrast-enhanced MSOT (CE-MSOT) provides a translatable real-time imaging approach for functional assessment of the gastrointestinal tract.
Assuntos
Verde de Indocianina , Tomografia Computadorizada por Raios X , Humanos , Corantes Fluorescentes , Imagens de Fantasmas , Trato Gastrointestinal/diagnóstico por imagemRESUMO
Proximal spinal muscular atrophy (SMA) is a rare progressive, life limiting genetic motor neuron disease. While promising causal therapies are available, meaningful prognostic biomarkers for therapeutic monitoring are missing. We demonstrate handheld Multispectral Optoacoustic Tomography (MSOT) as a novel non-invasive imaging approach to visualize and quantify muscle wasting in pediatric SMA. While MSOT signals were distributed homogeneously in muscles of healthy volunteers (HVs), SMA patients showed moth-eaten optoacoustic signal patterns. Further signal quantification revealed greatest differences between groups at the isosbestic point for hemoglobin (SWL 800 nm). The SWL 800 nm signal intensities further correlated with clinical phenotype tested by standard motor outcome measures. Therefore, handheld MSOT could enable non-invasive assessment of disease burden in SMA patients.
RESUMO
BACKGROUND: Chronic kidney disease (CKD) is a global burden affecting both children and adults. Novel imaging modalities hold great promise to visualize and quantify structural, functional, and molecular organ damage. The aim of the study was to visualize and quantify murine renal vasculature using label-free raster scanning optoacoustic mesoscopy (RSOM) in explanted organs from mice with renal injury. MATERIAL AND METHODS: For the experiments, freshly bisected kidneys of alpha 8 integrin knock-out (KO) and wildtype mice (WT) were used. A total of n=7 female (n=4 KO, n=3 WT) and n=6 male animals (n=2 KO, n=4 WT) aged 6 weeks were examined with RSOM optoacoustic imaging systems (RSOM Explorer P50 at SWL 532nm and/or ms-P50 imaging system at 532 nm, 555 nm, 579 nm, and 606 nm). Images were reconstructed using a dedicated software, analyzed for size and vascular area and compared to standard histologic sections. RESULTS: RSOM enabled mapping of murine kidney size and vascular area, revealing differences between kidney sizes of male (m) and female (f) mice (merged frequencies (MF) f vs. m: 52.42±6.24 mm2 vs. 69.18±15.96 mm2, p=0.0156) and absolute vascular area (MF f vs. m: 35.67±4.22 mm2 vs. 49.07±13.48 mm2, p=0.0036). Without respect to sex, the absolute kidney area was found to be smaller in knock-out (KO) than in wildtype (WT) mice (WT vs. KO: MF: p=0.0255) and showed a similar trend for the relative vessel area (WT vs. KO: MF p=0.0031). Also the absolute vessel areas of KO compared to WT were found significantly different (MF p=0.0089). A significant decrease in absolute vessel area was found in KO compared to WT male mice (MF WT vs. KO: 54.37±9.35 mm2 vs. 34.93±13.82 mm2, p=0.0232). In addition, multispectral RSOM allowed visualization of oxygenated and deoxygenated parenchymal regions by spectral unmixing. CONCLUSION: This study demonstrates the capability of RSOM for label-free visualization of differences in vascular morphology in ex vivo murine renal tissue at high resolution. Due to its scalability optoacoustic imaging provides an emerging modality with potential for further preclinical and clinical imaging applications.