Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 400(10362): 1531-1538, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36243024

RESUMO

BACKGROUND: The international spread of poliovirus exposes all countries to the risk of outbreaks and is designated a Public Health Emergency of International Concern by WHO. This risk can be exacerbated in countries using inactivated polio vaccine, which offers excellent protection against paralysis but is less effective than oral vaccine against poliovirus shedding, potentially allowing circulation without detection of paralytic cases for long periods of time. Our study investigated the molecular properties of type 2 poliovirus isolates found in sewage with an aim to detect virus transmission in the community. METHODS: We performed environmental surveillance in London, UK, testing sewage samples using WHO recommended methods that include concentration, virus isolation in cell culture, and molecular characterisation. We additionally implemented direct molecular detection and determined whole-genome sequences of every isolate using novel nanopore protocols. FINDINGS: 118 genetically linked poliovirus isolates related to the serotype 2 Sabin vaccine strain were detected in 21 of 52 sequential sewage samples collected in London between Feb 8 and July 4, 2022. Expansion of environmental surveillance sites in London helped localise transmission to several boroughs in north and east London. All isolates have lost two key attenuating mutations, are recombinants with a species C enterovirus, and an increasing proportion (20 of 118) meet the criterion for a vaccine-derived poliovirus, having six to ten nucleotide changes in the gene coding for VP1 capsid protein. INTERPRETATION: Environmental surveillance allowed early detection of poliovirus importation and circulation in London, permitting a rapid public health response, including enhanced surveillance and an inactivated polio vaccine campaign among children aged 1-9 years. Whole-genome sequences generated through nanopore sequencing established linkage of isolates and confirmed transmission of a unique recombinant poliovirus lineage that has now been detected in Israel and the USA. FUNDING: Medicines and Healthcare products Regulatory Agency, UK Health Security Agency, Bill & Melinda Gates Foundation, and National Institute for Health Research Medical Research Council.


Assuntos
Poliomielite , Poliovirus , Criança , Humanos , Poliovirus/genética , Esgotos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Londres/epidemiologia , Vacina Antipólio Oral , Vacina Antipólio de Vírus Inativado , Monitoramento Ambiental/métodos
2.
MMWR Morb Mortal Wkly Rep ; 71(24): 786-790, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709073

RESUMO

The emergence and international spread of neurovirulent circulating vaccine-derived polioviruses (cVDPVs) across multiple countries in Africa and Asia in recent years pose a major challenge to the goal of eradicating all forms of polioviruses. Approximately 90% of all cVDPV outbreaks are caused by the type 2 strain of the Sabin vaccine, an oral live, attenuated vaccine; cVDPV outbreaks typically occur in areas of persistently low immunization coverage (1). A novel type 2 oral poliovirus vaccine (nOPV2), produced by genetic modification of the type 2 Sabin vaccine virus genome (2), was developed and evaluated through phase I and phase II clinical trials during 2017-2019. nOPV2 was demonstrated to be safe and well-tolerated, have noninferior immunogenicity, and have superior genetic stability compared with Sabin monovalent type 2 (as measured by preservation of the primary attenuation site [domain V in the 5' noncoding region] and significantly lower neurovirulence of fecally shed vaccine virus in transgenic mice) (3-5). These findings indicate that nOPV2 could be an important tool in reducing the risk for generating vaccine-derived polioviruses (VDPVs) and the risk for vaccine-associated paralytic poliomyelitis cases. Based on the favorable preclinical and clinical data, and the public health emergency of international concern generated by ongoing endemic wild poliovirus transmission and cVDPV type 2 outbreaks, the World Health Organization authorized nOPV2 for use under the Emergency Use Listing (EUL) pathway in November 2020, allowing for its first use for outbreak response in March 2021 (6). As required by the EUL process, among other EUL obligations, an extensive plan was developed and deployed for obtaining and monitoring nOPV2 isolates detected during acute flaccid paralysis (AFP) surveillance, environmental surveillance, adverse events after immunization surveillance, and targeted surveillance for adverse events of special interest (i.e., prespecified events that have the potential to be causally associated with the vaccine product), during outbreak response, as well as through planned field studies. Under this monitoring framework, data generated from whole-genome sequencing of nOPV2 isolates, alongside other virologic data for isolates from AFP and environmental surveillance systems, are reviewed by the genetic characterization subgroup of an nOPV working group of the Global Polio Eradication Initiative. Global nOPV2 genomic surveillance during March-October 2021 confirmed genetic stability of the primary attenuating site. Sequence data generated through this unprecedented global effort confirm the genetic stability of nOPV2 relative to Sabin 2 and suggest that nOPV2 will be an important tool in the eradication of poliomyelitis. nOPV2 surveillance should continue for the duration of the EUL.


Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Animais , Viroses do Sistema Nervoso Central/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Camundongos , Mielite/prevenção & controle , Doenças Neuromusculares/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/etiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
3.
Acta Microbiol Immunol Hung ; 69(3): 233-240, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895489

RESUMO

Echovirus 9 (E9) has been detected in an increased number of symptomatic patient samples received by the National Enterovirus Reference Laboratory in Hungary during 2018 compared to previously reported years.Formerly identified E9 viruses from different specimen types detected from patients of various ages and showing differing clinical signs were chosen for the detailed analysis of genetic relationships and potential variations within the viral populations. We used next generation sequencing (NGS) analysis of 3,900 nucleotide long amplicons covering the entire capsid coding region of the viral genome without isolation, directly from clinical samples.Compared to the E9 reference strain, the viruses showed about 79% nucleotide and around 93% amino acid sequence similarity. The four new viral genome sequences had 1-20 nucleotide differences between them also resulting in 6 amino acid variances in the coding region, including 3 in the structural VP1 capsid protein. One virus from a patient with hand, foot, and mouth disease had two amino acid changes in the VP1 capsid protein. An amino acid difference was also detected in the non-structural 2C gene of one virus sequenced from a throat swab sample from a patient with meningitis, compared to the faecal specimen taken two days later. Two amino acid changes, one in the capsid protein, were found between faecal samples of meningitis patients of different ages.Sequencing the whole capsid genome revealed several nucleotide and amino acid differences between E9 virus strains detected in Hungary in 2018.


Assuntos
Proteínas do Capsídeo , Echovirus 9 , Humanos , Proteínas do Capsídeo/genética , Capsídeo , Echovirus 9/genética , Enterovirus Humano B/genética , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Viral , Nucleotídeos , Variação Genética , Filogenia
4.
Emerg Infect Dis ; 27(6): 1616-1626, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34013874

RESUMO

In 2018, an upsurge in echovirus 30 (E30) infections was reported in Europe. We conducted a large-scale epidemiologic and evolutionary study of 1,329 E30 strains collected in 22 countries in Europe during 2016-2018. Most E30 cases affected persons 0-4 years of age (29%) and 25-34 years of age (27%). Sequences were divided into 6 genetic clades (G1-G6). Most (53%) sequences belonged to G1, followed by G6 (23%), G2 (17%), G4 (4%), G3 (0.3%), and G5 (0.2%). Each clade encompassed unique individual recombinant forms; G1 and G4 displayed >2 unique recombinant forms. Rapid turnover of new clades and recombinant forms occurred over time. Clades G1 and G6 dominated in 2018, suggesting the E30 upsurge was caused by emergence of 2 distinct clades circulating in Europe. Investigation into the mechanisms behind the rapid turnover of E30 is crucial for clarifying the epidemiology and evolution of these enterovirus infections.


Assuntos
Infecções por Echovirus , Infecções por Enterovirus , Enterovirus Humano B/genética , Europa (Continente) , Genótipo , Humanos , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA
5.
Acta Microbiol Immunol Hung ; 67(4): 201-208, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33295885

RESUMO

This report provides the findings of a retrospective surveillance study on the emergence and circulation of enteroviruses with their associated clinical symptoms over a nine-year period detected at the National Enterovirus Reference Laboratory in Hungary between 2010-2018.Enterovirus (EV) detection and genotyping were performed directly from clinical samples. From 4,080 clinical specimens 25 EV types were identified with a median age of patients of 5 years and 68% of all cases affected children aged 10 years or younger, although infections occurred in all age-groups. In 130 cases neurological symptoms were recorded, in 123 cases the infection presented in skin related signs including hand, foot, and mouth disease (HFMD), herpangina and rash. In 2010 EV-A71 was found to cause the majority of diagnosed EV infections while in 2011 and from 2014-2018, Coxsackievirus (CV)-A6 was identified most often. Echovirus E6 accounted for the most cases in 2012 and Echovirus 30 dominated in 2013. EV-D68 was identified only in 2010 and 2013.Widespread circulation of several EV-A and EV-B viruses with occasional occurrence of EV-C and EV-D was detected. The ability of EVs to cause severe infections in sporadic cases and regular outbreaks highlight the importance of continued monitoring of circulating EV types.


Assuntos
Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus/genética , Genótipo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Surtos de Doenças , Enterovirus/classificação , Infecções por Enterovirus/complicações , Feminino , Humanos , Hungria/epidemiologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
6.
Virus Evol ; 10(1): veae023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544854

RESUMO

Widespread surveillance, rapid detection, and appropriate intervention will be critical for successful eradication of poliovirus. Using deployable next-generation sequencing (NGS) approaches, such as Oxford Nanopore Technologies' MinION, the time from sample to result can be significantly reduced compared to cell culture and Sanger sequencing. We developed piranha (poliovirus investigation resource automating nanopore haplotype analysis), a 'sequencing reads-to-report' solution to aid routine poliovirus testing of both stool and environmental samples and alleviate the bioinformatic bottleneck that often exists for laboratories adopting novel NGS approaches. Piranha can be used for efficient intratypic differentiation of poliovirus serotypes, for classification of Sabin-like polioviruses, and for detection of wild-type and vaccine-derived polioviruses. It produces interactive, distributable reports, as well as summary comma-separated values files and consensus poliovirus FASTA sequences. Piranha optionally provides phylogenetic analysis, with the ability to incorporate a local database, processing from raw sequencing reads to an interactive, annotated phylogeny in a single step. The reports describe each nanopore sequencing run with interpretable plots, enabling researchers to easily detect the presence of poliovirus in samples and quickly disseminate their results. Poliovirus eradication efforts are hindered by the lack of real-time detection and reporting, and piranha can be used to complement direct detection sequencing approaches.

7.
Microbiol Spectr ; : e0425222, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939356

RESUMO

Direct detection by PCR of poliovirus RNA in stool samples provides a rapid diagnostic and surveillance tool that can replace virus isolation by cell culture in global polio surveillance. The sensitivity of direct detection methods is likely to depend on the choice of RNA extraction method and sample volume. We report a comparative analysis of 11 nucleic acid extraction methods (7 manual and 4 semiautomated) for poliovirus molecular detection using stool samples (n = 59) that had been previously identified as poliovirus positive by cell culture. To assess the effect of RNA recovery methods, extracted RNA using each of the 11 methods was tested with a poliovirus-specific reverse transcription-quantitative PCR (RT-qPCR), a pan-poliovirus RT-PCR (near-whole-genome amplification), a pan-enterovirus RT-PCR (entire capsid region), and a nested VP1 PCR that is the basis of a direct detection method based on nanopore sequencing. We also assessed extracted RNA integrity and quantity. The overall effect of extraction method on poliovirus PCR amplification assays tested in this study was found to be statistically significant (P < 0.001), thus indicating that the choice of RNA extraction method is an important component that needs to be carefully considered for any diagnostic based on nucleic acid amplification. Performance of the methods was generally consistent across the different assays used. Of the 11 extraction methods tested, the MagMAX viral RNA isolation kit used manually or automatically was found to be the preferable method for poliovirus molecular direct detection considering performance, cost, and processing time. IMPORTANCE Poliovirus, the causative agent of poliomyelitis, is a target of global eradication led by the World Health Organization since 1988. Direct molecular detection and genomic sequencing without virus propagation in cell culture is arguably a critical tool in the final stages of polio eradication. Efficient recovery of good-quality viral RNA from stool samples is a prerequisite for direct detection by nucleic acid amplification. We tested 11 nucleic acid extraction methods to identify those facilitating sensitive, fast, simple, and cost-effective extraction, with flexibility for manual and automated protocols considered. Several different PCR assays were used to compare the recovered viral RNA to test suitability for poliovirus direct molecular detection. Our findings highlight the importance of choosing a suitable RNA extraction protocol and provide useful information to diagnostic laboratories and researchers facing the choice of RNA extraction method for direct molecular virus detection from stool.

8.
Nat Microbiol ; 8(9): 1634-1640, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591995

RESUMO

Timely detection of outbreaks is needed for poliovirus eradication, but gold standard detection in the Democratic Republic of the Congo takes 30 days (median). Direct molecular detection and nanopore sequencing (DDNS) of poliovirus in stool samples is a promising fast method. Here we report prospective testing of stool samples from suspected polio cases, and their contacts, in the Democratic Republic of the Congo between 10 August 2021 and 4 February 2022. DDNS detected polioviruses in 62/2,339 (2.7%) of samples, while gold standard combination of cell culture, quantitative PCR and Sanger sequencing detected polioviruses in 51/2,339 (2.2%) of the same samples. DDNS provided case confirmation in 7 days (median) in routine surveillance conditions. DDNS enabled confirmation of three serotype 2 circulating vaccine-derived poliovirus outbreaks 23 days (mean) earlier (range 6-30 days) than the gold standard method. The mean sequence similarity between sequences obtained by the two methods was 99.98%. Our data confirm the feasibility of implementing DDNS in a national poliovirus laboratory.


Assuntos
Sequenciamento por Nanoporos , Poliovirus , Poliovirus/genética , Reação em Cadeia da Polimerase , Compostos de Dansil
9.
Viruses ; 14(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062346

RESUMO

Infection with enterovirus D68 (EV-D68) has been linked with severe neurological disease such as acute flaccid myelitis (AFM) in recent years. However, active surveillance for EV-D68 is lacking, which makes full assessment of this association difficult. Although a high number of EV-D68 infections were expected in 2020 based on the EV-D68's known biannual circulation patterns, no apparent increase in EV-D68 detections or AFM cases was observed during 2020. We describe an upsurge of EV-D68 detections in wastewater samples from the United Kingdom between July and November 2021 mirroring the recently reported rise in EV-D68 detections in clinical samples from various European countries. We provide the first publicly available 2021 EV-D68 sequences showing co-circulation of EV-D68 strains from genetic clade D and sub-clade B3 as in previous years. Our results show the value of environmental surveillance (ES) for the early detection of circulating and clinically relevant human viruses. The use of a next-generation sequencing (NGS) approach helped us to estimate the prevalence of EV-D68 viruses among EV strains from other EV serotypes and to detect EV-D68 minor variants. The utility of ES at reducing gaps in virus surveillance for EV-D68 and the possible impact of nonpharmaceutical interventions introduced to control the COVID-19 pandemic on EV-D68 transmission dynamics are discussed.


Assuntos
Enterovirus Humano D/isolamento & purificação , Águas Residuárias/virologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Proteínas do Capsídeo/genética , Enterovirus Humano D/classificação , Enterovirus Humano D/genética , Humanos , Filogenia , RNA Viral/genética , SARS-CoV-2 , Análise de Sequência de DNA , Reino Unido/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Microbiologia da Água
10.
mSystems ; 6(3): e0035321, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34128696

RESUMO

SARS-CoV-2 variants with multiple amino acid mutations in the spike protein are emerging in different parts of the world, raising concerns regarding their possible impact on human immune response and vaccine efficacy against the virus. Recently, a variant named lineage B.1.1.7 was detected and shown to be rapidly spreading across the UK since November 2020. As surveillance for these SARS-CoV-2 variants of concern (VOCs) becomes critical, we have investigated the use of environmental surveillance (ES) for the rapid detection and quantification of B.1.1.7 viruses in sewage as a way of monitoring its expansion that is independent on the investigation of identified clinical cases. Next-generation sequencing analysis of amplicons synthesized from sewage concentrates revealed the presence of B.1.1.7 mutations in viral sequences, first identified in a sample collected in London on 10 November 2020 and shown to rapidly increase in frequency to >95% in January 2021, in agreement with clinical data over the same period. We show that ES can provide an early warning of VOCs becoming prevalent in the population and that, as well as B.1.1.7, our method can detect VOCs B.1.351 and P.1, first identified in South Africa and Brazil, respectively, and other viruses carrying critical spike mutation E484K, known to have an effect on virus antigenicity. Although we did not detect such mutation in viral RNAs from sewage, we did detect mutations at amino acids 478, 490, and 494, located close to amino acid 484 in the spike protein structure and known to also have an effect on antigenicity. IMPORTANCE The recent appearance and growth of new SARS-CoV-2 variants represent a major challenge for the control of the COVID-19 pandemic. These variants of concern contain mutations affecting antigenicity, which raises concerns on their possible impact on human immune response to the virus and vaccine efficacy against them. Here, we show how environmental surveillance for SARS-CoV-2 can be used to help us understand virus transmission patterns and provide an early warning of variants becoming prevalent in the population. We describe the detection and quantification of variant B.1.1.7, first identified in southeast England in sewage samples from London (UK) before widespread transmission of this variant was obvious from clinical cases. Variant B.1.1.7 was first detected in a sample from early November 2020, with the frequency of B.1.1.7 mutations detected in sewage rapidly increasing to >95% in January 2021, in agreement with increasing SARS-CoV-2 infections associated with B.1.1.7 viruses.

11.
Viruses ; 13(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562806

RESUMO

Human enteroviruses (EVs) are highly prevalent in sewage and have been associated with human diseases with complications leading to severe neurological syndromes. We have used a recently developed molecular method to investigate the presence of EVs in eight samples collected in 2017-2018 from water streams contaminated by drainage channels in three different locations in Nigeria. A total of 93 human EV strains belonging to 45 different serotypes were identified, far exceeding the number of strains and serotypes found in similar samples in previous studies. Next generation sequencing analysis retrieved whole-capsid genomic nucleotide sequences of EV strains belonging to all four A, B, C, and D species. Our results further demonstrate the value of environmental surveillance for the detection of EV transmission of both serotypes commonly associated with clinical syndromes, such as EV-A71, and those that appear to circulate silently but could eventually cause outbreaks and disease. Several uncommon serotypes, rarely reported elsewhere, were detected such as EV-A119, EV-B87, EV-C116, and EV-D111. Ten EV serotypes were detected in Nigeria for the first time and two of them, CV-A12 and EV-B86, firstly described in Africa. This method can be expanded to generate whole-genome EV sequences as we show here for one EV-D111 strain. Our data revealed phylogenetic relationships of Nigerian sewage strains with EV strains reported elsewhere, mostly from African origin, and provided new insights into the whole-genome structure of emerging serotype EV-D111 and recombination events among EV-D serotypes.


Assuntos
Enterovirus/genética , Enterovirus/isolamento & purificação , Microbiologia da Água , Proteínas do Capsídeo/genética , Enterovirus/classificação , Monitoramento Ambiental , Genoma Viral/genética , Humanos , Nigéria , Filogenia , RNA Viral/genética , Recombinação Genética , Sorogrupo , Esgotos/virologia
12.
Viruses ; 12(10)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050264

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the ongoing coronavirus disease (COVID-19) pandemic, is frequently shed in faeces during infection, and viral RNA has recently been detected in sewage in some countries. We have investigated the presence of SARS-CoV-2 RNA in wastewater samples from South-East England between 14th January and 12th May 2020. A novel nested RT-PCR approach targeting five different regions of the viral genome improved the sensitivity of RT-qPCR assays and generated nucleotide sequences at sites with known sequence polymorphisms among SARS-CoV-2 isolates. We were able to detect co-circulating virus variants, some specifically prevalent in England, and to identify changes in viral RNA sequences with time consistent with the recently reported increasing global dominance of Spike protein G614 pandemic variant. Low levels of viral RNA were detected in a sample from 11th February, 3 days before the first case was reported in the sewage plant catchment area. SARS-CoV-2 RNA concentration increased in March and April, and a sharp reduction was observed in May, showing the effects of lockdown measures. We conclude that viral RNA sequences found in sewage closely resemble those from clinical samples and that environmental surveillance can be used to monitor SARS-CoV-2 transmission, tracing virus variants and detecting virus importations.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Esgotos/virologia , Betacoronavirus/isolamento & purificação , COVID-19 , Inglaterra/epidemiologia , Monitoramento Ambiental , Variação Genética , Genoma Viral/genética , Humanos , Pandemias , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Análise de Sequência de DNA , Águas Residuárias/virologia
13.
Cell Host Microbe ; 27(5): 736-751.e8, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32330425

RESUMO

The live-attenuated oral poliovirus vaccine (OPV or Sabin vaccine) replicates in gut-associated tissues, eliciting mucosa and systemic immunity. OPV protects from disease and limits poliovirus spread. Accordingly, vaccination with OPV is the primary strategy used to end the circulation of all polioviruses. However, the ability of OPV to regain replication fitness and establish new epidemics represents a significant risk of polio re-emergence should immunization cease. Here, we report the development of a poliovirus type 2 vaccine strain (nOPV2) that is genetically more stable and less likely to regain virulence than the original Sabin2 strain. We introduced modifications within at the 5' untranslated region of the Sabin2 genome to stabilize attenuation determinants, 2C coding region to prevent recombination, and 3D polymerase to limit viral adaptability. Prior work established that nOPV2 is immunogenic in preclinical and clinical studies, and thus may enable complete poliovirus eradication.


Assuntos
Engenharia Genética/métodos , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Adulto , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Imunogenicidade da Vacina , Masculino , Camundongos , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/administração & dosagem , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Recombinação Genética , Vacinação , Células Vero , Virulência
14.
NPJ Vaccines ; 5(1): 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218998

RESUMO

Enormous progress has been made in global efforts to eradicate poliovirus, using live-attenuated Sabin oral poliovirus vaccine (OPV). However, as the incidence of disease due to wild poliovirus has declined, vaccine-derived poliovirus (VDPV) has emerged in areas of low-vaccine coverage. Coordinated global cessation of routine, type 2 Sabin OPV (OPV2) use has not resulted in fewer VDPV outbreaks, and continued OPV use in outbreak-response campaigns has seeded new emergences in low-coverage areas. The limitations of existing vaccines and current eradication challenges warranted development of more genetically stable OPV strains, most urgently for OPV2. Here, we report using codon deoptimization to further attenuate Sabin OPV2 by changing preferred codons across the capsid to non-preferred, synonymous codons. Additional modifications to the 5' untranslated region stabilized known virulence determinants. Testing of this codon-deoptimized new OPV2 candidate (nOPV2-CD) in cell and animal models demonstrated that nOPV2-CD is highly attenuated, grows sufficiently for vaccine manufacture, is antigenically indistinguishable from Sabin OPV2, induces neutralizing antibodies as effectively as Sabin OPV2, and unlike Sabin OPV2 is genetically stable and maintains an attenuation phenotype. In-human clinical trials of nOPV2-CD are ongoing, with potential for nOPV strains to serve as critical vaccine tools for achieving and maintaining polio eradication.

15.
Methods Mol Biol ; 1387: 239-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983738

RESUMO

The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.


Assuntos
DNA Complementar/genética , DNA Recombinante/genética , Genes Sintéticos , Poliovirus/genética , Bactérias/genética , Clonagem Molecular/métodos , Vetores Genéticos/genética , Genoma Viral , Humanos , Mutação , Plasmídeos/genética , Poliovirus/patogenicidade , RNA Viral/genética , Transcrição Gênica , Transfecção/métodos , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA