Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Antimicrob Chemother ; 69(9): 2508-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24879665

RESUMO

OBJECTIVES: Doripenem is a newer carbapenem with little data available to guide effective dosing during renal replacement therapy in critically ill patients. The objective of this study was to determine the population pharmacokinetics of doripenem in critically ill patients undergoing continuous venovenous haemodiafiltration (CVVHDF) for acute kidney injury (AKI). METHODS: This was an observational pharmacokinetic study in 12 infected critically ill adult patients with AKI undergoing CVVHDF and receiving 500 mg of doripenem intravenously every 8 h as a 60 min infusion. Serial blood samples were taken on 2 days of treatment and used for population pharmacokinetic analysis with S-ADAPT. RESULTS: The median (IQR) age was 62 (53-71) years, the median (IQR) weight was 77 (67-96) kg and the median (IQR) APACHE II score was 29 (19-32). The median blood, dialysate and replacement fluid rates were 200, 1000 and 1000 mL/h, respectively. A two-compartment linear model with doripenem clearance described by CVVHDF, renal or non-renal mechanisms was most appropriate. The mean value for total doripenem clearance was 4.46 L/h and volume of distribution was 38.0 L. Doripenem clearance by CVVHDF was significantly correlated with the replacement fluid flow rate and accounted for ∼30%-37% of total clearance. A dose of 500 mg intravenously every 8 h achieved favourable pharmacokinetic/pharmacodynamics for all patients up to an MIC of 4 mg/L. CONCLUSIONS: This is the first paper describing the pharmacokinetics/pharmacodynamics of doripenem in critically ill patients with AKI receiving CVVHDF. A dose of 500 mg intravenously every 8 h was appropriate for our CVVHDF settings for infections caused by susceptible bacteria.


Assuntos
Injúria Renal Aguda/terapia , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Carbapenêmicos/administração & dosagem , Carbapenêmicos/farmacocinética , Hemodiafiltração , Adulto , Idoso , Idoso de 80 Anos ou mais , Estado Terminal , Doripenem , Feminino , Humanos , Infusões Intravenosas , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Plasma/química , Adulto Jovem
2.
Antimicrob Agents Chemother ; 56(1): 231-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22005996

RESUMO

The panoply of resistance mechanisms in Pseudomonas aeruginosa makes resistance suppression difficult. Defining optimal regimens is critical. Cefepime is a cephalosporin whose 3' side chain provides some stability against AmpC ß-lactamases. We examined the activity of cefepime against P. aeruginosa wild-type strain PAO1 and its isogenic AmpC stably derepressed mutant in our hollow-fiber infection model. Dose-ranging studies demonstrated complete failure with resistance emergence (both isolates). Inoculum range studies demonstrated ultimate failure for all inocula. Lower inocula failed last (10 days to 2 weeks). Addition of a ß-lactamase inhibitor suppressed resistance even with the stably derepressed isolate. Tobramycin combination studies demonstrated resistance suppression in both the wild-type and the stably derepressed isolates. Quantitating the RNA message by quantitative PCR demonstrated that tobramycin decreased the message relative to that in cefepime-alone experiments. Western blotting with AmpC-specific antibody for P. aeruginosa demonstrated decreased expression. We concluded that suppression of ß-lactamase expression by tobramycin (a protein synthesis inhibitor) was at least part of the mechanism behind resistance suppression. Monte Carlo simulation demonstrated that a regimen of 2 g of cefepime every 8 h plus 7 mg/kg of body weight of tobramycin daily would provide robust resistance suppression for Pseudomonas isolates with cefepime MIC values up to 8 mg/liter and tobramycin MIC values up to 1 mg/liter. For P. aeruginosa resistance suppression, combination therapy is critical.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacocinética , beta-Lactamases/genética , Antibacterianos/farmacocinética , Western Blotting , Cefepima , Cefalosporinas/farmacocinética , Simulação por Computador , Esquema de Medicação , Interações Medicamentosas , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Modelos Biológicos , Método de Monte Carlo , Inibidores da Síntese de Proteínas/farmacocinética , Inibidores da Síntese de Proteínas/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Lactamases/deficiência
3.
mBio ; 13(6): e0291622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374076

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has radically altered daily life. Effective antiviral therapies to combat COVID-19, especially severe disease, remain scarce. Molnupiravir is an antiviral that has shown clinical efficacy against mild-to-moderate COVID-19 but failed to provide benefit to hospitalized patients with severe disease. Here, we explained the mechanism behind the failure of molnupiravir in hospitalized patients and identified alternative dosing strategies that would improve therapeutic outcomes in all patients with COVID-19. We showed that delaying therapy initiation markedly decreased the antiviral effect of molnupiravir, and these results were directly related to intracellular drug triphosphate pools and intracellular viral burden at the start of therapy. The adverse influence of therapeutic delay could be overcome by increasing drug exposure, which increased intracellular molnupiravir triphosphate concentrations that inhibited viral replication. These findings illustrated that molnupiravir must be administered as early as possible following COVID-19 symptom onset to maximize therapeutic efficacy. Higher doses may be effective in patients hospitalized with severe disease, but the safety of high-dose molnupiravir regimens is unknown. Our findings could be extended to design effective regimens with nucleoside analogs for other RNA viruses, especially those with pandemic potential. IMPORTANCE In this study, we showed that early intervention with molnupiravir resulted in a greater antiviral effect, and we explained the mechanism behind this phenomenon. Our results predicted and explained the failure of molnupiravir in hospitalized patients and highlighted the utility of preclinical pharmacodynamic studies to design optimal antiviral regimens for the treatment of viral diseases. This contrasts with the procedure that was implemented early in the pandemic in which clinical studies were conducted in the absence of preclinical experimentation. These findings are significant and demonstrated the importance of experimental approaches in antiviral development for treatments against COVID-19 as well as other viral diseases.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais
4.
Pharmacotherapy ; 35(1): 34-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25630411

RESUMO

Since their reintroduction into the clinic in the 1980s, the polymyxin antibiotics colistin-administered intravenously as an inactive prodrug, colistin methanesulfonate (CMS)-and polymyxin B have assumed an important role as salvage therapy for otherwise untreatable gram-negative infections. However, the emerging pharmacodynamic and pharmacokinetic data on CMS/colistin and polymyxin B indicate that polymyxin monotherapy is unlikely to generate plasma concentrations that are reliably efficacious. Additionally, regrowth and the emergence of resistance with monotherapy are commonly reported even when concentrations exceed those achieved clinically. Given this situation, polymyxin combination therapy, which is increasingly being used clinically, has been suggested as a possible means of increasing antimicrobial activity and reducing the development of resistance. Although considerable in vitro data support this view, investigations of polymyxin combination therapy in patients have only recently commenced. The currently available clinical data for polymyxin combinations are generally limited to retrospective analyses and small, low-powered, prospective studies using traditional dosage regimens that achieve low plasma concentrations. Considering the potential for rapid development of resistance to polymyxins, well-designed clinical trials that include higher-dose polymyxin regimens are urgently required to provide a more definitive answer regarding the role of polymyxin combination therapy compared with monotherapy. In this article, we provide an overview of key in vitro and clinical investigations examining CMS/colistin and polymyxin B combination therapy.


Assuntos
Antibacterianos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Polimixinas , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Quimioterapia Combinada , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Polimixinas/administração & dosagem , Polimixinas/farmacocinética , Polimixinas/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA