Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(6): 1451-1457, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412060

RESUMO

BACKGROUND: The high mortality of systemic anthrax is likely a consequence of the severe central nervous system inflammation that occurs in anthrax meningitis. Effective treatment of such infections requires, at a minimum, adequate cerebrospinal fluid (CSF) antimicrobial concentrations. METHODS: We reviewed English medical literature and regulatory documents to extract information on serum and CSF exposures for antimicrobials with in vitro activity against Bacillus anthracis. Using CSF pharmacokinetic exposures and in vitro B. anthracis susceptibility data, we used population pharmacokinetic modeling and Monte Carlo simulations to determine whether a specific antimicrobial dosage would likely achieve effective CSF antimicrobial activity in patients with normal to inflamed meninges (ie, an intact to markedly disrupted blood-brain barrier). RESULTS: The probability of microbiologic success at achievable antimicrobial dosages was high (≥95%) for ciprofloxacin, levofloxacin (500 mg every 12 hours), meropenem, imipenem/cilastatin, penicillin G, ampicillin, ampicillin/sulbactam, doxycycline, and minocycline; acceptable (90%-95%) for piperacillin/tazobactam and levofloxacin (750 mg every 24 hours); and low (<90%) for vancomycin, amikacin, clindamycin, and linezolid. CONCLUSIONS: Prompt empiric antimicrobial therapy of patients with suspected or confirmed anthrax meningitis may reduce the high morbidity and mortality. Our data support using several ß-lactam-, fluoroquinolone-, and tetracycline-class antimicrobials as first-line and alternative agents for treatment of patients with anthrax meningitis; all should achieve effective microbiologic exposures. Our data suggest antimicrobials that should not be relied on to treat suspected or documented anthrax meningitis. Furthermore, the protein synthesis inhibitors clindamycin and linezolid can decrease toxin production and may be useful components of combination therapy.


Assuntos
Antraz , Antibacterianos , Bacillus anthracis , Meningites Bacterianas , Humanos , Bacillus anthracis/efeitos dos fármacos , Antraz/tratamento farmacológico , Meningites Bacterianas/tratamento farmacológico , Meningites Bacterianas/microbiologia , Meningites Bacterianas/líquido cefalorraquidiano , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Método de Monte Carlo , Testes de Sensibilidade Microbiana
2.
Antimicrob Agents Chemother ; 68(4): e0140023, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415667

RESUMO

Contezolid is a novel oxazolidinone antibiotic with a promising safety profile. Oral contezolid and its intravenous (IV) prodrug contezolid acefosamil (CZA) are in development for treatment of diabetic foot and acute bacterial skin and skin structure infections (ABSSSI). The prodrug CZA is converted to active contezolid via intermediate MRX-1352. This study aimed to provide the pharmacokinetic rationale for safe, effective, and flexible dosage regimens with initial IV CZA followed by oral contezolid. We simultaneously modeled plasma concentrations from 110 healthy volunteers and 74 phase 2 patients with ABSSSI via population pharmacokinetics (using the importance sampling estimation algorithm), and optimized dosage regimens by Monte Carlo simulations. This included data on MRX-1352, contezolid, and its metabolite MRX-1320 from 66 healthy volunteers receiving intravenous CZA (150-2400 mg) for up to 28 days, and 74 patients receiving oral contezolid [800 mg every 12 h (q12h)] for 10 days. The apparent total clearance for 800 mg oral contezolid with food was 16.0 L/h (23.4% coefficient of variation) in healthy volunteers and 17.7 L/h (53.8%) in patients. CZA was rapidly converted to MRX-1352, which subsequently transformed to contezolid. The proposed dosage regimen used an IV CZA 2000 mg loading dose with 1000 mg IV CZA q12h as maintenance dose(s), followed by 800 mg oral contezolid q12h (with food). During each 24-h period, Monte Carlo simulations predicted this regimen to achieve consistent areas under the curve of 91.9 mg·h/L (range: 76.3-106 mg·h/L) under all scenarios. Thus, this regimen was predicted to reliably achieve efficacious contezolid exposures independent of timing of switch from IV CZA to oral contezolid.IMPORTANCEThis study provides the population pharmacokinetic rationale for the dosage regimen of the intravenous (IV) prodrug contezolid acefosamil (CZA) followed by oral contezolid. We developed the first integrated population model for the pharmacokinetics of the MRX-1352 intermediate prodrug, active contezolid, and its main metabolite MRX-1320 based on data from three clinical studies in healthy volunteers and phase 2 patients. The proposed regimen was predicted to reliably achieve efficacious contezolid exposures independent of timing of switch from IV CZA to oral contezolid.


Assuntos
Oxazolidinonas , Pró-Fármacos , Humanos , Antibacterianos/farmacocinética , Oxazolidinonas/farmacocinética , Piridonas/farmacocinética
3.
Antimicrob Agents Chemother ; 68(2): e0139323, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169309

RESUMO

Aminoglycosides are important treatment options for serious lung infections, but modeling analyses to quantify their human lung epithelial lining fluid (ELF) penetration are lacking. We estimated the extent and rate of penetration for five aminoglycosides via population pharmacokinetics from eight published studies. The area under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak concentrations were blunted, but overall exposures were moderately high.


Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Antibacterianos/farmacocinética , Pulmão , Amicacina
4.
Antimicrob Agents Chemother ; 68(3): e0139423, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289076

RESUMO

Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.


Assuntos
Amicacina , Pneumonia , Humanos , Animais , Camundongos , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmão , Pneumonia/tratamento farmacológico , Peso Corporal
5.
Antimicrob Agents Chemother ; 68(3): e0139923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329330

RESUMO

Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Doripenem , Ágar , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Penicilinas , Ácido Clavulânico/farmacologia , Imipenem/farmacologia , Água , Testes de Sensibilidade Microbiana
6.
MMWR Recomm Rep ; 72(6): 1-47, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37963097

RESUMO

This report updates previous CDC guidelines and recommendations on preferred prevention and treatment regimens regarding naturally occurring anthrax. Also provided are a wide range of alternative regimens to first-line antimicrobial drugs for use if patients have contraindications or intolerances or after a wide-area aerosol release of: Bacillus anthracis spores if resources become limited or a multidrug-resistant B. anthracis strain is used (Hendricks KA, Wright ME, Shadomy SV, et al.; Workgroup on Anthrax Clinical Guidelines. Centers for Disease Control and Prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis 2014;20:e130687; Meaney-Delman D, Rasmussen SA, Beigi RH, et al. Prophylaxis and treatment of anthrax in pregnant women. Obstet Gynecol 2013;122:885-900; Bradley JS, Peacock G, Krug SE, et al. Pediatric anthrax clinical management. Pediatrics 2014;133:e1411-36). Specifically, this report updates antimicrobial drug and antitoxin use for both postexposure prophylaxis (PEP) and treatment from these previous guidelines best practices and is based on systematic reviews of the literature regarding 1) in vitro antimicrobial drug activity against B. anthracis; 2) in vivo antimicrobial drug efficacy for PEP and treatment; 3) in vivo and human antitoxin efficacy for PEP, treatment, or both; and 4) human survival after antimicrobial drug PEP and treatment of localized anthrax, systemic anthrax, and anthrax meningitis. Changes from previous CDC guidelines and recommendations include an expanded list of alternative antimicrobial drugs to use when first-line antimicrobial drugs are contraindicated or not tolerated or after a bioterrorism event when first-line antimicrobial drugs are depleted or ineffective against a genetically engineered resistant: B. anthracis strain. In addition, these updated guidelines include new recommendations regarding special considerations for the diagnosis and treatment of anthrax meningitis, including comorbid, social, and clinical predictors of anthrax meningitis. The previously published CDC guidelines and recommendations described potentially beneficial critical care measures and clinical assessment tools and procedures for persons with anthrax, which have not changed and are not addressed in this update. In addition, no changes were made to the Advisory Committee on Immunization Practices recommendations for use of anthrax vaccine (Bower WA, Schiffer J, Atmar RL, et al. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019;68[No. RR-4]:1-14). The updated guidelines in this report can be used by health care providers to prevent and treat anthrax and guide emergency preparedness officials and planners as they develop and update plans for a wide-area aerosol release of B. anthracis.


Assuntos
Vacinas contra Antraz , Antraz , Anti-Infecciosos , Antitoxinas , Bacillus anthracis , Meningite , Adulto , Humanos , Feminino , Criança , Gravidez , Estados Unidos/epidemiologia , Antraz/diagnóstico , Antraz/tratamento farmacológico , Antraz/prevenção & controle , Vacinas contra Antraz/uso terapêutico , Vacinas contra Antraz/efeitos adversos , Anti-Infecciosos/uso terapêutico , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Centers for Disease Control and Prevention, U.S. , Aerossóis/farmacologia , Aerossóis/uso terapêutico , Meningite/induzido quimicamente , Meningite/tratamento farmacológico
7.
Antimicrob Agents Chemother ; 67(6): e0160322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199612

RESUMO

The ß-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for ß-lactams and ß-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All ß-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating ß-lactams. Imipenem yielded 1.5 ± 0.11 log10 killing at 1h compared to <0.5 log10 killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated (r2 = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future ß-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacologia em Rede , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Imipenem/farmacologia , Imipenem/metabolismo , Ceftazidima/metabolismo , beta-Lactamases/metabolismo
8.
Antimicrob Agents Chemother ; 67(5): e0019723, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37022153

RESUMO

Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.


Assuntos
Antibacterianos , Polimixina B , Camundongos , Animais , Polimixina B/farmacocinética , Antibacterianos/farmacocinética , Pulmão/microbiologia , Disponibilidade Biológica , Plasma
9.
Antimicrob Agents Chemother ; 67(8): e0041423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428034

RESUMO

Pseudomonas aeruginosa remains a challenge in chronic respiratory infections in cystic fibrosis (CF). Ceftolozane-tazobactam has not yet been evaluated against multidrug-resistant hypermutable P. aeruginosa isolates in the hollow-fiber infection model (HFIM). Isolates CW41, CW35, and CW44 (ceftolozane-tazobactam MICs of 4, 4, and 2 mg/L, respectively) from adults with CF were exposed to simulated representative epithelial lining fluid pharmacokinetics of ceftolozane-tazobactam in the HFIM. Regimens were continuous infusion (CI; 4.5 g/day to 9 g/day, all isolates) and 1-h infusions (1.5 g every 8 hours and 3 g every 8 hours, CW41). Whole-genome sequencing and mechanism-based modeling were performed for CW41. CW41 (in four of five biological replicates) and CW44 harbored preexisting resistant subpopulations; CW35 did not. For replicates 1 to 4 of CW41 and CW44, 9 g/day CI decreased bacterial counts to <3 log10 CFU/mL for 24 to 48 h, followed by regrowth and resistance amplification. Replicate 5 of CW41 had no preexisting subpopulations and was suppressed below ~3 log10 CFU/mL for 120 h by 9 g/day CI, followed by resistant regrowth. Both CI regimens reduced CW35 bacterial counts to <1 log10 CFU/mL by 120 h without regrowth. These results corresponded with the presence or absence of preexisting resistant subpopulations and resistance-associated mutations at baseline. Mutations in ampC, algO, and mexY were identified following CW41 exposure to ceftolozane-tazobactam at 167 to 215 h. Mechanism-based modeling well described total and resistant bacterial counts. The findings highlight the impact of heteroresistance and baseline mutations on the effect of ceftolozane-tazobactam and limitations of MIC to predict bacterial outcomes. The resistance amplification in two of three isolates supports current guidelines that ceftolozane-tazobactam should be utilized together with another antibiotic against P. aeruginosa in CF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Adulto , Humanos , Pseudomonas aeruginosa , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Cefalosporinas/farmacocinética , Tazobactam/farmacologia , Antibacterianos/farmacocinética , Mitomicina/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
10.
Mol Pharm ; 20(11): 5690-5700, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37773975

RESUMO

To assess bioequivalence of locally acting suspension-based nasal sprays, the U.S. FDA currently recommends a weight-of-evidence approach. In addition to in vitro and human pharmacokinetic (PK) studies, this includes a comparative clinical endpoint study to ensure equivalent bioavailability of the active pharmaceutical ingredient (API) at the site of action. The present study aimed to assess, within an in vitro/in vivo correlation paradigm, whether PK studies and dissolution kinetics are sensitive to differences in drug particle size for a locally acting suspension-based nasal spray product. Two investigational suspension-based nasal formulations of mometasone furoate (MF-I and MF-II; delivered dose: 180 µg) differed in API particle size and were compared in a single-center, double-blind, single-dose, randomized, two-way crossover PK study in 44 healthy subjects with oral charcoal block. Morphology-directed Raman spectroscopy yielded volume median diameters of 3.17 µm for MF-I and 5.50 µm for MF-II, and dissolution studies showed that MF-II had a slower dissolution profile than MF-I. The formulation with larger API particles (MF-II) showed a 45% smaller Cmax and 45% smaller AUC0-inf compared to those of MF-I. Systemic bioavailability of MF-I (2.20%) and MF-II (1.18%) correlated well with the dissolution kinetics, with the faster dissolving formulation yielding the higher bioavailability. This agreement between pharmacokinetics and dissolution kinetics cross-validated both methods and supported their use in assessing potential differences in slowly dissolving suspension-based nasal spray products.


Assuntos
Sprays Nasais , Humanos , Disponibilidade Biológica , Furoato de Mometasona/farmacocinética , Tamanho da Partícula , Equivalência Terapêutica , Método Duplo-Cego , Estudos Cross-Over
11.
Pharm Res ; 40(5): 1177-1191, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081302

RESUMO

This study aimed to gain an in-depth understanding of the pulmonary fate of three experimental fluticasone propionate (FP) dry powder inhaler formulations which differed in mass median aerodynamic diameters (MMAD; A-4.5 µm, B-3.8 µm and C-3.7 µm; total single dose: 500 µg). Systemic disposition parameter estimates were obtained from published pharmacokinetic data after intravenous dosing to improve robustness. A biphasic pulmonary absorption model, with mucociliary clearance from the slower absorption compartment, and three systemic disposition compartments was most suitable. Rapid absorption, presumably from peripheral lung, had half-lives of 6.9 to 14.6 min. The peripherally deposited dose (12.6 µg) was significantly smaller for formulation A-4.5 µm than for the other formulations (38.7 and 39.3 µg for B-3.8 µm and C-3.7 µm). The slow absorption half-lives ranged from 6.86 to 9.13 h and were presumably associated with more central lung regions, where mucociliary clearance removed approximately half of the centrally deposited dose. Simulation-estimation studies showed that a biphasic absorption model could be reliably identified and that parameter estimates were unbiased and reasonably precise. Bioequivalence assessment of population pharmacokinetics derived central and peripheral lung doses suggested that formulation A-4.5 µm lacked bioequivalence compared to the other formulations both for central and peripheral doses. In contrast, the other fomulations were bioequivalent. Overall, population pharmacokinetics holds promise to provide important insights into the pulmonary fate of inhalation drugs, which are not available from non-compartmental analysis. This supports the assessment of the pulmonary bioequivalence of fluticasone propionate inhaled formulations through pharmacokinetic approaches, and may be helpful for discussions on evaluating alternatives to clinical endpoint studies.


Assuntos
Broncodilatadores , Inaladores de Pó Seco , Humanos , Propionatos , Fluticasona , Pulmão , Administração por Inalação , Androstadienos/farmacocinética
12.
Clin Infect Dis ; 75(Suppl 3): S379-S391, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251546

RESUMO

BACKGROUND: Anthrax is endemic to many countries, including the United States. The causative agent, Bacillus anthracis, poses a global bioterrorism threat. Without effective antimicrobial postexposure prophylaxis (PEPAbx) and treatment, the mortality of systemic anthrax is high. To inform clinical guidelines for PEPAbx and treatment of B. anthracis infections in humans, we systematically evaluated animal anthrax treatment model studies. METHODS: We searched for survival outcome data in 9 scientific search engines for articles describing antimicrobial PEPAbx or treatment of anthrax in animals in any language through February 2019. We performed meta-analyses of efficacy of antimicrobial PEPAbx and treatment for each drug or drug combination using random-effects models. Pharmacokinetic/pharmacodynamic relationships were developed for 5 antimicrobials with available pharmacokinetic data. Monte Carlo simulations were used to predict unbound drug exposures in humans. RESULTS: We synthesized data from 34 peer-reviewed studies with 3262 animals. For PEPAbx and treatment of infection by susceptible B. anthracis, effective monotherapy can be accomplished with fluoroquinolones, tetracyclines, ß-lactams (including penicillin, amoxicillin-clavulanate, and imipenem-cilastatin), and lipopeptides or glycopeptides. For naturally occurring strains, unbound drug exposures in humans were predicted to adequately cover the minimal inhibitory concentrations (MICs; those required to inhibit the growth of 50% or 90% of organisms [MIC50 or MIC90]) for ciprofloxacin, levofloxacin, and doxycycline for both the PEPAbx and treatment targets. Dalbavancin covered its MIC50 for PEPAbx. CONCLUSIONS: These animal studies show many reviewed antimicrobials are good choices for PEPAbx or treatment of susceptible B. anthracis strains, and some are also promising options for combating resistant strains. Monte Carlo simulations suggest that oral ciprofloxacin, levofloxacin, and doxycycline are particularly robust choices for PEPAbx or treatment.


Assuntos
Antraz , Anti-Infecciosos , Bacillus anthracis , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Animais , Antraz/tratamento farmacológico , Antraz/prevenção & controle , Antibacterianos/farmacologia , Anti-Infecciosos/uso terapêutico , Combinação Imipenem e Cilastatina/farmacologia , Combinação Imipenem e Cilastatina/uso terapêutico , Ciprofloxacina/uso terapêutico , Doxiciclina/uso terapêutico , Glicopeptídeos/farmacologia , Glicopeptídeos/uso terapêutico , Humanos , Levofloxacino/uso terapêutico , Lipopeptídeos/farmacologia , Lipopeptídeos/uso terapêutico , Modelos Animais , Tetraciclinas/uso terapêutico , Estados Unidos , beta-Lactamas/uso terapêutico
13.
Antimicrob Agents Chemother ; 66(3): e0220321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041509

RESUMO

Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ, 0.5 mg/liter; MICTOB, 2 mg/liter) and CW8 (MICCAZ, 2 mg/liter; MICTOB, 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log10 CFU/ml) and biofilm (>3.8 log10 CFU/cm2) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/uso terapêutico
14.
Antimicrob Agents Chemother ; 66(9): e0052722, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35924913

RESUMO

Metallo-ß-lactamase (MBL)-producing Gram-negative bacteria cause infections associated with high rates of morbidity and mortality. Currently, a leading regimen to treat infections caused by MBL-producing bacteria is aztreonam combined with ceftazidime-avibactam. The purpose of the present study was to evaluate and rationally optimize the combination of aztreonam and ceftazidime-avibactam with and without polymyxin B against a clinical Klebsiella pneumoniae isolate producing NDM-1 and CTX-M by use of the hollow fiber infection model (HFIM). A novel de-escalation approach to polymyxin B dosing was also explored, whereby a standard 0-h loading dose was followed by maintenance doses that were 50% of the typical clinical regimen. In the HFIM, the addition of polymyxin B to aztreonam plus ceftazidime-avibactam significantly improved bacterial killing, leading to eradication, including for the novel de-escalation dosing strategy. Serial samples from the growth control and monotherapies were explored in a Galleria mellonella virulence model to assess virulence changes. Weibull regression showed that low-level ceftazidime resistance and treatment with monotherapy resulted in increased G. mellonella mortality (P < 0.05). A neutropenic rabbit pneumonia model demonstrated that aztreonam plus ceftazidime-avibactam with or without polymyxin B resulted in similar bacterial killing, and these combination therapies were statistically significantly better than monotherapies (P < 0.05). However, only the polymyxin B-containing combination therapy produced a statistically significant decrease in lung weights (P < 0.05), indicating a decreased inflammatory process. Altogether, adding polymyxin B to the combination of aztreonam plus ceftazidime-avibactam for NDM- and CTX-M-producing K. pneumoniae improved bacterial killing effects, reduced lung inflammation, suppressed resistance amplification, and limited virulence changes.


Assuntos
Ceftazidima , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Aztreonam/farmacologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Parede Celular/metabolismo , Combinação de Medicamentos , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Coelhos , beta-Lactamases/metabolismo
15.
J Antimicrob Chemother ; 77(2): 356-363, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668007

RESUMO

BACKGROUND: Aminoglycoside-containing regimens may be an effective treatment option for infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp), but aminoglycoside-resistance genes are common in these strains. The relationship between the aminoglycoside-resistance genes and aminoglycoside MICs remains poorly defined. OBJECTIVES: To identify genotypic signatures capable of predicting aminoglycoside MICs for CR-Kp. METHODS: Clinical CR-Kp isolates (n = 158) underwent WGS to detect aminoglycoside-resistance genes. MICs of amikacin, gentamicin, plazomicin and tobramycin were determined by broth microdilution (BMD). Principal component analysis was used to initially separate isolates based on genotype. Multiple linear regression was then used to generate models that predict aminoglycoside MICs based on the aminoglycoside-resistance genes. Last, the performance of the predictive models was tested against a validation cohort of 29 CR-Kp isolates. RESULTS: Among the original 158 CR-Kp isolates, 91.77% (145/158) had at least one clinically relevant aminoglycoside-resistance gene. As a group, 99.37%, 84.81%, 82.28% and 10.76% of the CR-Kp isolates were susceptible to plazomicin, amikacin, gentamicin and tobramycin, respectively. The first two principal components explained 72.23% of the total variance in aminoglycoside MICs and separated isolates into four groups with aac(6')-Ib, aac(6')-Ib', aac(6')-Ib+aac(6')-Ib' or no clinically relevant aminoglycoside-resistance genes. Regression models predicted aminoglycoside MICs with adjusted R2 values of 56%-99%. Within the validation cohort, the categorical agreement when comparing the observed BMD MICs with the predicated MICs was 96.55%, 89.66%, 86.21% and 82.76% for plazomicin, gentamicin, amikacin and tobramycin, respectively. CONCLUSIONS: Susceptibility to each aminoglycoside varies in CR-Kp. Detection of aminoglycoside-resistance genes may be useful to predict aminoglycoside MICs for CR-Kp.


Assuntos
Aminoglicosídeos , Klebsiella pneumoniae , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Carbapenêmicos , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
16.
Molecules ; 27(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268619

RESUMO

Infections due to Gram-negative bacteria are increasingly dangerous due to the spread of multi-drug resistant strains, emphasizing the urgent need for new antibiotics with alternative modes of action. We have previously identified a novel class of antibacterial agents, thioacetamide-triazoles, using an antifolate targeted screen and determined their mode of action which is dependent on activation by cysteine synthase A. Herein, we report a detailed examination of the anti-E. coli structure-activity relationship of the thioacetamide-triazoles. Analogs of the initial hit compounds were synthesized to study the contribution of the aryl, thioacetamide, and triazole sections. A clear structure-activity relationship was observed generating compounds with excellent inhibition values. Substitutions to the aryl ring were generally best tolerated, including the introduction of thiazole and pyridine heteroaryl systems. Substitutions to the central thioacetamide linker section were more nuanced; the introduction of a methyl branch to the thioacetamide linker substantially decreased antibacterial activity, but the isomeric propionamide and N-benzamide systems retained activity. Changes to the triazole portion of the molecule dramatically decreased the antibacterial activity, further indicating that 1,2,3-triazole is critical for potency. From these studies, we have identified new lead compounds with desirable in-vitro ADME properties and in-vivo pharmacokinetic properties.


Assuntos
Escherichia coli , Triazóis , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tioacetamida , Triazóis/farmacologia
17.
Antimicrob Agents Chemother ; 65(9): e0069221, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152820

RESUMO

Antibiotic combinations, including ceftazidime/avibactam (CAZ/AVI), are frequently employed to combat KPC-producing Klebsiella pneumoniae (KPC-Kp), though such combinations have not been rationally optimized. Clinical KPC-Kp isolates with common genes encoding aminoglycoside-modifying enzymes (AMEs), aac(6')-Ib' or aac(6')-Ib, were used in static time-kill assays (n = 4 isolates) and the hollow-fiber infection model (HFIM; n = 2 isolates) to evaluate the activity of gentamicin, amikacin, and CAZ/AVI alone and in combinations. A short course, one-time aminoglycoside dose was also evaluated. Gentamicin plus CAZ/AVI was then tested in a mouse pneumonia model. Synergy with CAZ/AVI was more common with amikacin for aac(6')-Ib'-containing KPC-Kp but more common with gentamicin for aac(6')-Ib-containing isolates in time-kill assays. In the HFIM, although the isolates were aminoglycoside-susceptible at baseline, aminoglycoside monotherapies displayed variable initial killing, followed by regrowth and resistance emergence. CAZ/AVI combined with amikacin or gentamicin resulted in undetectable counts 50 h sooner than CAZ/AVI monotherapy against KPC-Kp with aac(6')-Ib'. CAZ/AVI monotherapy failed to eradicate KPC-Kp with aac(6')-Ib and a combination with gentamicin led to undetectable counts 70 h sooner than with amikacin. A one-time aminoglycoside dose with CAZ/AVI provided similar killing to aminoglycosides dosed for 7 days. In the mouse pneumonia model (n = 1 isolate), gentamicin and CAZ/AVI achieved a 6.0-log10 CFU/lung reduction at 24 h, which was significantly greater than either monotherapy (P < 0.005). Aminoglycosides in combination with CAZ/AVI were promising for KPC-Kp infections; this was true even for a one-time aminoglycoside dose. Selecting aminoglycosides based on AME genes or susceptibilities can improve the pharmacodynamic activity of the combination.


Assuntos
Ceftazidima , Infecções por Klebsiella , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Genótipo , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Camundongos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-33782013

RESUMO

Ceftazidime (CAZ)-avibactam (AVI) is a ß-lactam/ß-lactamase inhibitor combination with activity against type A and type C ß-lactamases. Resistance emergence has been seen, with multiple mechanisms accounting for the resistance. We performed four experiments in the dynamic hollow-fiber infection model, delineating the linkage between drug exposure and both the rate of bacterial kill and resistance emergence by all mechanisms. The Pseudomonas aeruginosa isolate had MICs of 1.0 mg/liter (CAZ) and 4 mg/liter (AVI). We demonstrated that the time at ≥4.0 mg/liter AVI was linked to the rate of bacterial kill. Linkage to resistance emergence/suppression was more complex. In one experiment in which CAZ and AVI administration was intermittent and continuous, respectively, and in which AVI was given in unitary steps from 1 to 8 mg/liter, AVI at up to 3 mg/liter allowed resistance emergence, whereas higher values did not. The threshold value was 3.72 mg/liter as a continuous infusion to counterselect resistance (AVI area under the concentration-time curve [AUC] of 89.3 mg · h/liter). The mechanism involved a 7-amino-acid deletion in the Ω-loop region of the Pseudomonas-derived cephalosporinase (PDC) ß-lactamase. Further experiments in which CAZ and AVI were both administered intermittently with regimens above and below the AUC of 89.3 mg · h/liter resulted in resistance in the lower-exposure groups. Deletion mutants were not identified. Finally, in an experiment in which paired exposures as both continuous and intermittent infusions were performed, the lower value of 25 mg · h/liter by both profiles allowed selection of deletion mutants. Of the five instances in which these mutants were recovered, four had a continuous-infusion profile. Both continuous-infusion administration and low AVI AUC exposures have a role in selection of this mutation.


Assuntos
Ceftazidima , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinase , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Pseudomonas , Pseudomonas aeruginosa/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-33106262

RESUMO

The U.S. Food and Drug Administration (FDA) hosted a public workshop entitled "Advancing Animal Models for Antibacterial Drug Development" on 5 March 2020. The workshop mainly focused on models of pneumonia caused by Pseudomonas aeruginosa and Acinetobacter baumannii The program included discussions from academic investigators, industry, and U.S. government scientists. The potential use of mouse, rabbit, and pig models for antibacterial drug development was presented and discussed.


Assuntos
Acinetobacter baumannii , Antibacterianos , Animais , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos , Camundongos , Modelos Animais , Coelhos , Suínos , Estados Unidos , United States Food and Drug Administration
20.
Artigo em Inglês | MEDLINE | ID: mdl-33106266

RESUMO

Mycobacterium abscessus causes serious infections that often require over 18 months of antibiotic combination therapy. There is no standard regimen for the treatment of M. abscessus infections, and the multitude of combinations that have been used clinically have had low success rates and high rates of toxicities. With ß-lactam antibiotics being safe, double ß-lactam and ß-lactam/ß-lactamase inhibitor combinations are of interest for improving the treatment of M. abscessus infections and minimizing toxicity. However, a mechanistic approach for building these combinations is lacking since little is known about which penicillin-binding protein (PBP) target receptors are inactivated by different ß-lactams in M. abscessus We determined the preferred PBP targets of 13 ß-lactams and 2 ß-lactamase inhibitors in two M. abscessus strains and identified PBP sequences by proteomics. The Bocillin FL binding assay was used to determine the ß-lactam concentrations that half-maximally inhibited Bocillin binding (50% inhibitory concentrations [IC50s]). Principal component analysis identified four clusters of PBP occupancy patterns. Carbapenems inactivated all PBPs at low concentrations (0.016 to 0.5 mg/liter) (cluster 1). Cephalosporins (cluster 2) inactivated PonA2, PonA1, and PbpA at low (0.031 to 1 mg/liter) (ceftriaxone and cefotaxime) or intermediate (0.35 to 16 mg/liter) (ceftazidime and cefoxitin) concentrations. Sulbactam, aztreonam, carumonam, mecillinam, and avibactam (cluster 3) inactivated the same PBPs as cephalosporins but required higher concentrations. Other penicillins (cluster 4) specifically targeted PbpA at 2 to 16 mg/liter. Carbapenems, ceftriaxone, and cefotaxime were the most promising ß-lactams since they inactivated most or all PBPs at clinically relevant concentrations. These first PBP occupancy patterns in M. abscessus provide a mechanistic foundation for selecting and optimizing safe and effective combination therapies with ß-lactams.


Assuntos
Mycobacterium abscessus , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Penicilinas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA