Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Muscle Res Cell Motil ; 40(2): 99-110, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31292801

RESUMO

Both insect flight muscle and cardiac muscle contract rhythmically, but the way in which repetitive contractions are controlled is different in the two types of muscle. We have compared the flight muscle of the water bug, Lethocerus, with cardiac muscle. Both have relatively high resting elasticity and are activated by an increase in sarcomere length or a quick stretch. The larger response of flight muscle is attributed to the highly ordered lattice of thick and thin filaments and to an isoform of troponin C that has no exchangeable Ca2+-binding site. The Ca2+ sensitivity of cardiac muscle and flight muscle can be manipulated so that cardiac muscle responds to Ca2+ like flight muscle, and flight muscle responds like cardiac muscle, showing the malleability of regulation. The interactions of the subunits in flight muscle troponin are described; a model of the complex, using the structure of cardiac troponin as a template, shows an overall similarity of cardiac and flight muscle troponin complexes. The dual regulation by thick and thin filaments in skeletal and cardiac muscle is thought to operate in flight muscle. The structure of inhibited myosin heads folded back on the thick filament in relaxed Lethocerus fibres has not been seen in other species and may be an adaptation to the rapid contractions of flight muscle. A scheme for regulation by thick and thin filaments during oscillatory contraction is described. Cardiac and flight muscle have much in common, but the differing mechanical requirements mean that regulation by both thick and thin filaments is adapted to the particular muscle.


Assuntos
Cálcio/metabolismo , Heterópteros/metabolismo , Músculo Esquelético/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Animais , Proteínas de Insetos/metabolismo , Especificidade de Órgãos , Troponina C/metabolismo
2.
J Biol Chem ; 291(31): 16090-9, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226601

RESUMO

Muscles are usually activated by calcium binding to the calcium sensory protein troponin-C, which is one of the three components of the troponin complex. However, in cardiac and insect flight muscle activation is also produced by mechanical stress. Little is known about the molecular bases of this calcium-independent activation. In Lethocerus, a giant water bug often used as a model system because of its large muscle fibers, there are two troponin-C isoforms, called F1 and F2, that have distinct roles in activating the muscle. It has been suggested that this can be explained either by differences in structural features or by differences in the interactions with other proteins. Here we have compared the structural and dynamic properties of the two proteins and shown how they differ. We have also mapped the interactions of the F2 isoform with peptides spanning the sequence of its natural partner, troponin-I. Our data have allowed us to build a model of the troponin complex and may eventually help in understanding the specialized function of the F1 and F2 isoforms and the molecular mechanism of stretch activation.


Assuntos
Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Troponina C/metabolismo , Animais , Heterópteros/genética , Proteínas de Insetos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Troponina C/genética
3.
J Cell Sci ; 128(18): 3386-97, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26251439

RESUMO

Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Voo Animal/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Proteínas Quinases/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Proteínas Musculares/química , Protamina Quinase , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura
4.
J Cell Sci ; 125(Pt 14): 3367-79, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22467859

RESUMO

Obscurin (also known as Unc-89 in Drosophila) is a large modular protein in the M-line of Drosophila muscles. Drosophila obscurin is similar to the nematode protein UNC-89. Four isoforms are found in the muscles of adult flies: two in the indirect flight muscle (IFM) and two in other muscles. A fifth isoform is found in the larva. The larger IFM isoform has all the domains that were predicted from the gene sequence. Obscurin is in the M-line throughout development of the embryo, larva and pupa. Using P-element mutant flies and RNAi knockdown flies, we have investigated the effect of decreased obscurin expression on the structure of the sarcomere. Embryos, larvae and pupae developed normally. In the pupa, however, the IFM was affected. Although the Z-disc was normal, the H-zone was misaligned. Adults were unable to fly and the structure of the IFM was irregular: M-lines were missing and H-zones misplaced or absent. Isolated thick filaments were asymmetrical, with bare zones that were shifted away from the middle of the filaments. In the sarcomere, the length and polarity of thin filaments depends on the symmetry of adjacent thick filaments; shifted bare zones resulted in abnormally long or short thin filaments. We conclude that obscurin in the IFM is necessary for the development of a symmetrical sarcomere in Drosophila IFM.


Assuntos
Drosophila/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Animais , Drosophila/genética , Drosophila/metabolismo , Feminino , Expressão Gênica , Imunoprecipitação , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Isoformas de Proteínas , Sarcômeros/metabolismo
5.
J Muscle Res Cell Motil ; 35(3-4): 211-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25134799

RESUMO

Stretch activation (SA) is a fundamental property of all muscle types that increases power output and efficiency, yet its mechanism is unknown. Recently, studies have implicated troponin isoforms as important in the SA mechanism. The highly stretch-activated Drosophila IFMs express two isoforms of the Ca(2+)-binding subunit of troponin (TnC). TnC1 (TnC-F2 in Lethocerus IFM) has two calcium binding sites, while an unusual isoform, TnC4 (TnC-F1 in Lethocerus IFM), has only one binding site. We investigated the roles of these two TnC isoforms in Drosophila IFM by targeting RNAi to each isoform. IFMs with TnC4 expression (normally ~90% of total TnC) replaced by TnC1 did not generate isometric tension, power or display SA. However, TnC4 knockdown resulted in sarcomere ultrastructure disarray, which could explain the lack of mechanical function and thus make interpretation of the influence of TnC4 on SA difficult. Elimination of TnC1 expression (normally ~10% of total TnC) by RNAi resulted in normal muscle structure. In these IFMs, fiber power generation, isometric tension, stretch-activated force and calcium sensitivity were statistically identical to wild type. When TnC1 RNAi was driven by an IFM specific driver, there was no decrease in flight ability or wing beat frequency, which supports our mechanical findings suggesting that TnC1 is not essential for the mechanical function of Drosophila IFM. This finding contrasts with previous work in Lethocerus IFM showing TnC1 is essential for maximum isometric force generation. We propose that differences in TnC1 function in Lethocerus and Drosophila contribute to the ~40-fold difference in IFM isometric tension generated between these species.


Assuntos
Proteínas de Drosophila/fisiologia , Voo Animal/fisiologia , Contração Muscular/fisiologia , Troponina C/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Isoformas de Proteínas/fisiologia
6.
Open Biol ; 13(4): 220350, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37121260

RESUMO

Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.


Assuntos
Drosophila , Proteínas Musculares , Animais , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Musculares/metabolismo , Estrutura Terciária de Proteína , Sarcômeros/química , Sarcômeros/metabolismo
7.
Biochemistry ; 50(11): 1839-47, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21250664

RESUMO

While in most muscles contraction is triggered by calcium effluxes, insect flight muscles are also activated by mechanical stretch. We are interested in understanding the role that the troponin C protein, usually the calcium sensor, plays in stretch activation. In the flight muscles of Lethocerus, a giant water bug often used as a model system, there are two isoforms of TnC, F1 and F2, present in an approximately 10:1 ratio. F1 TnC is responsible for activating the muscle following a stretch, whereas F2 TnC produces a sustained contraction, the magnitude of which depends on the concentration of Ca(2+) in the fiber. We have previously shown that F1 TnC binds only one Ca(2+) ion in its C-terminal domain and that interaction with troponin H, the insect ortholog of troponin I, is insensitive to Ca(2+). Here, we have studied the effect of Ca(2+) and Mg(2+) on the affinities of the interaction of F2 TnC with troponin H peptides. We show that the presence of two Ca(2+) ions, one in each of the globular domains, increases the affinity for TnH by at least 1 order of magnitude. The N lobe has a lower affinity for Ca(2+), but it is also sensitive to Mg(2+). The C lobe is insensitive to Mg(2+) as previously demonstrated by mutations of the individual EF-hands. The interaction with TnH seems also to have significant structural differences from that observed for the F1 TnC isoform. We discuss how our findings could account for stretch activation.


Assuntos
Cálcio/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Troponina C/química , Troponina C/metabolismo , Animais , Sítios de Ligação , Heterópteros , Contração Muscular , Músculo Esquelético/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
8.
J Muscle Res Cell Motil ; 32(4-5): 303-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22105701

RESUMO

The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle.


Assuntos
Drosophila/fisiologia , Voo Animal/fisiologia , Heterópteros/fisiologia , Contração Isométrica/fisiologia , Músculos/fisiologia , Tropomiosina/metabolismo , Troponina C/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Músculos/ultraestrutura , Isoformas de Proteínas/metabolismo , Sarcômeros/metabolismo , Homologia de Sequência de Aminoácidos , Troponina C/genética , Troponina I/genética , Troponina I/metabolismo , Difração de Raios X
9.
J Gen Physiol ; 153(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33836065

RESUMO

The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.


Assuntos
Actinas , Sarcômeros , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Sítios de Ligação , Conectina/genética , Conectina/metabolismo , Sarcômeros/metabolismo
10.
J Mol Biol ; 433(9): 166901, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33647290

RESUMO

Striated muscle responds to mechanical overload by rapidly up-regulating the expression of the cardiac ankyrin repeat protein, CARP, which then targets the sarcomere by binding to titin N2A in the I-band region. To date, the role of this interaction in the stress response of muscle remains poorly understood. Here, we characterise the molecular structure of the CARP-receptor site in titin (UN2A) and its binding of CARP. We find that titin UN2A contains a central three-helix bundle fold (ca 45 residues in length) that is joined to N- and C-terminal flanking immunoglobulin domains by long, flexible linkers with partial helical content. CARP binds titin by engaging an α-hairpin in the three-helix fold of UN2A, the C-terminal linker sequence, and the BC loop in Ig81, which jointly form a broad binding interface. Mutagenesis showed that the CARP/N2A association withstands sequence variations in titin N2A and we use this information to evaluate 85 human single nucleotide variants. In addition, actin co-sedimentation, co-transfection in C2C12 cells, proteomics on heart lysates, and the mechanical response of CARP-soaked myofibrils imply that CARP induces the cross-linking of titin and actin myofilaments, thereby increasing myofibril stiffness. We conclude that CARP acts as a regulator of force output in the sarcomere that preserves muscle mechanical performance upon overload stress.


Assuntos
Actinas/química , Actinas/metabolismo , Conectina/química , Conectina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Masculino , Camundongos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutação , Miofibrilas/química , Miofibrilas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Maleabilidade , Ligação Proteica , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sarcômeros/química , Sarcômeros/metabolismo
11.
Biochemistry ; 49(8): 1719-26, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20104876

RESUMO

Muscle contraction is activated by two distinct mechanisms. One depends on the calcium influx, and the other is calcium-independent and activated by mechanical stress. A prototypical example of stretch activation is observed in insect muscles. In Lethocerus, a model system ideally suited for studying stretch activation, the two mechanisms seem to be under the control of different isoforms of troponin C (TnC), F1 and F2, which are responsible for stretch and calcium-dependent regulation, respectively. We have previously shown that F1 TnC is a typical collapsed dumbbell EF-hand protein that accommodates one calcium ion in its fourth EF-hand. When calcium loaded, the C-terminal domain of F1 TnC is in an open conformation which allows binding to troponin I. We have determined the solution structure of the isolated F1 TnC C-terminal domain in the absence of calcium and have compared it together with its dynamical properties with those of the calcium-loaded form. The domain is folded also in the absence of calcium and is in a closed conformation. Binding of a single calcium is sufficient to induce a modest but clear closed-to-open conformational transition and releases the conformational entropy observed in the calcium-free form. These results provide the first example of a TnC domain in which the presence of only one calcium ion is sufficient to induce a closed-to-open transition and clarify the role of calcium in stretch activation.


Assuntos
Heterópteros/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Troponina C/química , Troponina C/metabolismo , Animais , Cálcio/metabolismo , Dicroísmo Circular , Músculo Esquelético/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Troponina I/metabolismo
12.
Structure ; 15(7): 813-24, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17637342

RESUMO

To gain a molecular description of how muscles can be activated by mechanical stretch, we have solved the structure of the calcium-loaded F1 isoform of troponin C (TnC) from Lethocerus and characterized its interactions with troponin I (TnI). We show that the presence of only one calcium cation in the fourth EF hand motif is sufficient to induce an open conformation in the C-terminal lobe of F1 TnC, in contrast with what is observed in vertebrate muscle. This lobe interacts in a calcium-independent way both with the N terminus of TnI and, with lower affinity, with a region of TnI equivalent to the switch and inhibitory peptides of vertebrate muscles. Using both synthetic peptides and recombinant proteins, we show that the N lobe of F1 TnC is not engaged in interactions with TnI, excluding a regulatory role of this domain. These findings provide insights into mechanically stimulated muscle contraction.


Assuntos
Cálcio/metabolismo , Heterópteros/metabolismo , Modelos Moleculares , Troponina C/química , Sequência de Aminoácidos , Animais , Voo Animal , Heterópteros/fisiologia , Dados de Sequência Molecular , Contração Muscular/fisiologia , Músculos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Troponina C/fisiologia
13.
J Mol Biol ; 373(3): 587-98, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17868693

RESUMO

Lethocerus indirect flight muscle has two isoforms of troponin C, TnC-F1 and F2, which are unusual in having only a single C-terminal calcium binding site (site IV, isoform F1) or one C-terminal and one N-terminal site (sites IV and II, isoform F2). We show here that thin filaments assembled from rabbit actin and Lethocerus tropomyosin (Tm) and troponin (Tn) regulate the binding of rabbit myosin to rabbit actin in much the same way as the mammalian regulatory proteins. The removal of calcium reduces the rate constant for S1 binding to regulated actin about threefold, independent of which TmTn is used. This is consistent with calcium removal causing the TmTn to occupy the B or blocked state to about 70% of the total. The mid point pCa for the switch differed for TnC-F1 and F2 (pCa 6.9 and 6.0, respectively) consistent with the reported calcium affinities for the two TnCs. Equilibrium titration of S1 binding to regulated actin filaments confirms calcium regulated binding of S1 to actin and shows that in the absence of calcium the three actin filaments (TnC-F1, TnC-F2 and mammalian control) are almost indistinguishable in terms of occupancy of the B and C states of the filament. In the presence of calcium TnC-F2 is very similar to the control with approximately 80% of the filament in the C-state and 10-15% in the fully on M-State while TnC-F1 has almost 50% in each of the C and M states. This higher occupancy of the M-state for TnC-F1, which occurs above pCa 6.9, is consistent with this isoform being involved in the calcium activation of stretch activation. However, it leaves unanswered how a C-terminal calcium binding site of TnC can activate the thin filament.


Assuntos
Actinas/metabolismo , Heterópteros/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Tropomiosina/metabolismo , Troponina C/metabolismo , Animais , Cálcio/metabolismo , Modelos Biológicos , Contração Muscular/fisiologia , Ligação Proteica , Coelhos , Transdução de Sinais
14.
J Mol Biol ; 367(4): 953-69, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17316686

RESUMO

The passive elasticity of the sarcomere in striated muscle is determined by large modular proteins, such as titin in vertebrates. In insects, the function of titin is divided between two shorter proteins, projectin and sallimus (Sls), which are the products of different genes. The Drosophila sallimus (sls) gene codes for a protein of 2 MDa. The N-terminal half of the protein is largely made up of immunoglobulin (Ig) domains and unique sequence; the C-terminal half has two stretches of sequence similar to the elastic PEVK region of titin, and at the end of the molecule there is a region of tandem Ig and fibronectin domains. We have investigated splicing pathways of the sls gene and identified isoforms expressed in different muscle types, and at different stages of Drosophila development. The 5' half of sls codes for zormin and kettin; both proteins contain Ig domains and can be expressed as separate isoforms, or as larger proteins linked to sequence downstream. There are multiple splicing pathways between the kettin region of sls and sequence coding for the two PEVK regions. All the resulting protein isoforms have sequence derived from the 3' end of the sls gene. Splicing of exons varies at different stages of development. Kettin RNA is predominant in the embryo, and longer transcripts are expressed in larva, pupa and adult. Sls isoforms in the indirect flight muscle (IFM) are zormin, kettin and Sls(700), in which sequence derived from the end of the gene is spliced to kettin RNA. Zormin is in both M-line and Z-disc. Kettin and Sls(700) extend from the Z-disc to the ends of the thick filaments, though, Sls(700) is only in the myofibril core. These shorter isoforms would contribute to the high stiffness of IFM. Other muscles in the thorax and legs have longer Sls isoforms with varying amounts of PEVK sequence; all span the I-band to the ends of the thick filaments. In muscles with longer I-bands, the proportion of PEVK sequence would determine the extensibility of the sarcomere. Alternative Sls isoforms could regulate the stiffness of the many fibre types in Drosophila muscles.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/metabolismo , Região 5'-Flanqueadora , Citoesqueleto de Actina/metabolismo , Animais , Animais Geneticamente Modificados , Conectina , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Elasticidade , Embrião não Mamífero , Expressão Gênica , Modelos Biológicos , Desenvolvimento Muscular/genética , Músculos/embriologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tórax/metabolismo
15.
Front Mol Biosci ; 9: 855014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372521
16.
Open Biol ; 6(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683155

RESUMO

Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin's I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected.

17.
J Mol Biol ; 325(4): 623-8, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12507467

RESUMO

Arthrin is a ubiquitinated actin that is present in flight muscles of some insects. In addition, it has been found in the malaria parasite Plasmodium falciparum. The role of this monoubiquitylation is not clear, and it does not appear to be associated with proteolytic degradation. The stoichiometry of arthrin to actin in Lethocerus indirect flight muscle, 1:6, suggests that there would be one arthrin molecule for each Tm-Tn (tropomyosin-troponin) complex. The appearance of arthrin after tropomyosin and troponin in Drosophila development is consistent with the Tm-Tn complex determining which actin subunit is targeted for conjugation with ubiquitin. We have used a new approach of three-dimensional reconstruction of helical filaments, the iterative helical real space reconstruction method, to extract segments of homogeneous arthrin out of long filaments where the conformation of the ubiquitin is more heterogeneous. Surprisingly, the location of the ubiquitin is on the face of actin subdomain 1, opposite to where tropomyosin binds in the "off" state, suggesting that there could not be a direct interaction between the ubiquitin and the tropomyosin. It is possible that the troponin complex in the "on" state that is bound to one actin strand makes an unfavorable contact with a ubiquitin molecule attached to the opposite actin strand. This might be the basis for a destabilization of the on state at rest length. Lys118 is the most likely residue to which the ubiquitin is conjugated, based upon fitting atomic structures of actin and ubiquitin into the reconstruction.


Assuntos
Heterópteros/química , Proteínas dos Microfilamentos/química , Proteínas Musculares/química , Ubiquitina/química , Actinas/química , Animais , Processamento de Imagem Assistida por Computador , Proteínas de Insetos , Substâncias Macromoleculares , Proteínas dos Microfilamentos/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Estrutura Molecular , Proteínas Musculares/ultraestrutura , Conformação Proteica , Tropomiosina/química , Troponina/química
18.
J Mol Biol ; 326(1): 151-65, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12547198

RESUMO

Insect glutathione-S-transferases (GSTs) are grouped in three classes, I, II and recently III; class I (Delta class) enzymes together with class III members are implicated in conferring resistance to insecticides. Class II (Sigma class) GSTs, however, are poorly characterized and their exact biological function remains elusive. Drosophila glutathione S-transferase-2 (GST-2) (DmGSTS1-1) is a class II enzyme previously found associated specifically with the insect indirect flight muscle. It was recently shown that GST-2 exhibits considerable conjugation activity for 4-hydroxynonenal (4-HNE), a lipid peroxidation product, raising the possibility that it has a major anti-oxidant role in the flight muscle. Here, we report the crystal structure of GST-2 at 1.75A resolution. The GST-2 dimer shows the canonical GST fold with glutathione (GSH) ordered in only one of the two binding sites. While the GSH-binding mode is similar to other GST structures, a distinct orientation of helix alpha6 creates a novel electrophilic substrate-binding site (H-site) topography, largely flat and without a prominent hydrophobic-binding pocket, which characterizes the H-sites of other GSTs. The H-site displays directionality in the distribution of charged/polar and hydrophobic residues creating a binding surface that explains the selectivity for amphipolar peroxidation products, with the polar-binding region formed by residues Y208, Y153 and R145 and the hydrophobic-binding region by residues V57, A59, Y211 and the C-terminal V249. A structure-based model of 4-HNE binding is presented. The model suggest that residues Y208, R145 and possibly Y153 may be key residues involved in catalysis.


Assuntos
Drosophila melanogaster/enzimologia , Glutationa Transferase/química , Glutationa Transferase/classificação , Peroxidação de Lipídeos , Aldeídos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Alinhamento de Sequência
19.
J Mol Biol ; 341(5): 1161-73, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15321713

RESUMO

Here, we report on the structure and in situ location of arthrin (monoubiquitinated actin). Labelling of insect muscle thin filaments with a ubiquitin antibody reveals that every seventh subunit along the filament long-pitch helices is ubiquitinated. A three-dimensional reconstruction of frozen-hydrated arthrin filaments was produced. This was based on a novel algorithm that divides filament images into short segments that are used for single-particle image processing. Difference maps with an actin filament reconstruction locate ubiquitin at the side of actin sub-domain 1 opposite where myosin binds. Consistent with the reconstructions, peptide mapping places the ubiquitin linkage on lysine 118 in actin. Molecular modelling was used to generate arthrin monomers from ubiquitin and actin crystal structures. Filament models constructed from these monomers were compared with the arthrin reconstruction. The reconstruction suggests ubiquitin attached to Lys118 adopts one or a few conformers, stabilized by a small interface with actin. The function of actin ubiquitination is not known, but may involve regulation of muscle contractile activity.


Assuntos
Actinas/química , Proteínas de Drosophila/química , Proteínas dos Microfilamentos/química , Proteínas Musculares/química , Ubiquitina/metabolismo , Actinas/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Insetos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/metabolismo , Estrutura Quaternária de Proteína
20.
J Mol Biol ; 427(12): 2151-8, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25868382

RESUMO

The Drosophila indirect flight muscles (IFM) can be used as a model for the study of sarcomere assembly. Here we use a transgenic line with a green fluorescent protein (GFP) exon inserted into the Z-disc-proximal portion of sallimus (Sls), also known as Drosophila titin, to observe sarcomere assembly during IFM development. Firstly, we confirm that Sls-GFP can be used in the heterozygote state without an obvious phenotype in IFM and other muscles. We then use Sls-GFP in the IFM to show that sarcomeres grow individually and uniformly throughout the fibre, growing linearly in length and in diameter. Finally, we show that limiting the amounts of Sls in the IFM using RNAi leads to sarcomeres with smaller Z-discs in their core, whilst the thick/thin filament lattice can form peripherally without a Z-disc. Thick filament preparations from those muscles show that although the Z-disc-containing core has thick filaments of a regular length, filaments from the peripheral lattice are longer and asymmetrical around the bare zone. Therefore, the Z-disc and Sls are required for thick filament length specification but not for the assembly of the thin/thick filament lattice.


Assuntos
Conectina/metabolismo , Drosophila/enzimologia , Drosophila/fisiologia , Sarcômeros/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Músculos/enzimologia , Músculos/fisiologia , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA