Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Res ; 241: 117629, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967703

RESUMO

Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.


Assuntos
Alismatales , Água do Mar , Água , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Alismatales/fisiologia , Ecossistema
2.
Microb Ecol ; 86(3): 1552-1564, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36790500

RESUMO

Temperate rocky reefs often support mosaics of alternative habitats such as macroalgal forests, algal turfs and sea urchin barrens. Although the composition of epilithic microbial biofilms (EMBs) is recognized as a major determinant of macroalgal recruitment, their role in regulating the stability of alternative habitats on temperate rocky reefs remains unexplored. On shallow rocky reefs of the Island of Capraia (NW Mediterranean), we compared EMB structure among canopy stands formed by the fucoid Ericaria brachycarpa, algal turfs, and urchin barrens under ambient versus experimentally enhanced nutrient levels. The three habitats shared a core microbial community consisting of 21.6 and 25.3% of total ASVs under ambient and enhanced nutrient conditions, respectively. Although Gammaproteobacteria, Alphaproteobacteria and Flavobacteriia were the most abundant classes across habitats, multivariate analyses at the ASV level showed marked differences in EMB composition among habitats. Enhancing nutrient level had no significant effect on EMBs, although it increased their similarity between macroalgal canopy and turf habitats. At both ambient and enriched nutrient levels, ASVs mostly belonging to Proteobacteria and Bacteroidetes were more abundant in EMBs from macroalgal canopies than barrens. In contrast, ASVs belonging to the phylum of Proteobacteria and, in particular, to the families of Rhodobacteraceae and Flavobacteriaceae at ambient nutrient levels and of Rhodobacteraceae and Bacteriovoracaceae at enhanced nutrient levels were more abundant in turf than canopy habitats. Our results show that primary surfaces from alternative habitats that form mosaics on shallow rocky reefs in oligotrophic areas host distinct microbial communities that are, to some extent, resistant to moderate nutrient enhancement. Understanding the role of EMBs in generating reinforcing feedback under different nutrient loading regimes appears crucial to advance our understanding of the mechanisms underpinning the stability of habitats alternative to macroalgal forests as well as their role in regulating reverse shifts.


Assuntos
Ecossistema , Florestas , Animais , Nutrientes , Ouriços-do-Mar , Recifes de Corais
3.
Proc Natl Acad Sci U S A ; 117(45): 28160-28166, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106409

RESUMO

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.


Assuntos
Biodiversidade , Clima , Pesqueiros , Cadeia Alimentar , Alismatales , Animais , Biomassa , Feminino , Peixes , Geografia , Aquecimento Global , Humanos , Masculino
4.
Environ Res ; 211: 113094, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292241

RESUMO

Microplastic (MP) pollution represents a distinctive mark of the Anthropocene. Despite the increasing efforts to determine the ecological impacts of MP on marine biodiversity, our understanding of their toxicological effects on invertebrate species is still limited. Despite their key functional roles, sponges (Phylum Porifera) are particularly understudied in MP research. These filter-feeders extract and retain particles from the water column, across a broad size range. In this study, we carried out a laboratory experiment to assess the uptake of MPs (polyethylene, PE) by the Mediterranean sponge Petrosia ficiformis, how MPs influence key biological process after different times of exposure (24h and 72h) and whether they can be subsequently eliminated. MP uptake increased with time of exposure, with 30.6% of the inoculated MP particles found in sponge samples after 72h. MPs impaired filtration and respiration rates and these effects were still evident 72h after sponges had been transferred in uncontaminated water. Our study shows that time of exposure represents a key factor in determining MP toxicity in sponges. In addition, our results suggest that sponges are able to incorporate foreign particles and may thus be a potential bioindicator for MP pollutants.


Assuntos
Petrosia , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Microplásticos , Plásticos , Polietileno , Taxa Respiratória , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
PLoS Biol ; 16(9): e2006852, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180154

RESUMO

Habitat-forming species sustain biodiversity and ecosystem functioning in harsh environments through the amelioration of physical stress. Nonetheless, their role in shaping patterns of species distribution under future climate scenarios is generally overlooked. Focusing on coastal systems, we assess how habitat-forming species can influence the ability of stress-sensitive species to exhibit plastic responses, adapt to novel environmental conditions, or track suitable climates. Here, we argue that habitat-former populations could be managed as a nature-based solution against climate-driven loss of biodiversity. Drawing from different ecological and biological disciplines, we identify a series of actions to sustain the resilience of marine habitat-forming species to climate change, as well as their effectiveness and reliability in rescuing stress-sensitive species from increasingly adverse environmental conditions.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Adaptação Fisiológica , Refúgio de Vida Selvagem , Especificidade da Espécie
6.
Biol Conserv ; 263: 109175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34035536

RESUMO

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

7.
Glob Chang Biol ; 25(12): 4165-4178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31535452

RESUMO

Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13 C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13 C), previously exposed to elevated CO2 , were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2 . At elevated CO2 , infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short-term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft-sediment systems.


Assuntos
Dióxido de Carbono , Água do Mar , Carbono , Ciclo do Carbono , Sedimentos Geológicos , Humanos , Concentração de Íons de Hidrogênio , Hipóxia
8.
Ecology ; 99(4): 957-965, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393982

RESUMO

Invasion success is regulated by multiple factors. While the roles of disturbance and propagule pressure in regulating the establishment of non-native species are widely acknowledged, that of propagule morphology (a proxy for quality) is poorly known. By means of a multi-factorial field experiment, we tested how the number (5 vs. 10) and quality (intact, without fronds or without rhizoids) of fragments of the clonal invasive seaweed, Caulerpa cylindracea, influenced its ability to establish in patches of the native seagrass, Posidonia oceanica, exposed to different intensities of disturbance (0, 50, or 100% reduction in canopy cover). We hypothesized that the ability of fragments to establish would be greater for intact fragments (high quality) and reduced more by frond removal (low quality) than rhizoid removal (intermediate quality). At low propagule pressure or quality, fragment establishment was predicted to increase with increasing disturbance, whereas, at high propagule pressure or quality, it was predicted to be high regardless of disturbance intensity. Disturbance intensity, fragment number and quality had independent effects on C. cylindracea establishment success. Disturbance always facilitated fragment establishment. However, fragments retaining fronds, either intact or deprived of rhizoids, had higher establishment success than fragments deprived of fronds. Increasing propagule number had weak effects on the cover of C. cylindracea. Our results demonstrate that propagule traits enabling the acquisition of resources made available by disturbance can be more important than propagule number in determining the establishment and spread of clonal non-native plants. More generally, our study suggests that propagule quality is a key, yet underexplored, determinant of invasion success.


Assuntos
Espécies Introduzidas , Alga Marinha , Ecossistema , Plantas
9.
Ecology ; 99(12): 2654-2666, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157296

RESUMO

Understanding how increasing human domination of the biosphere affects life on earth is a critical research challenge. This task is facilitated by the increasing availability of open-source data repositories, which allow ecologists to address scientific questions at unprecedented spatial and temporal scales. Large datasets are mostly observational, so they may have limited ability to uncover causal relations among variables. Experiments are better suited at attributing causation, but they are often limited in scope. We propose hybrid datasets, resulting from the integration of observational with experimental data, as an approach to leverage the scope and ability to attribute causality in ecological studies. We show how the analysis of hybrid datasets with emerging techniques in time series analysis (Convergent Cross-mapping) and macroecology (Joint Species Distribution Models) can generate novel insights into causal effects of abiotic and biotic processes that would be difficult to achieve otherwise. We illustrate these principles with two case studies in marine ecosystems and discuss the potential to generalize across environments, species and ecological processes. If used wisely, the analysis of hybrid datasets may become the standard approach for research goals that seek causal explanations for large-scale ecological phenomena.


Assuntos
Big Data , Ecossistema , Ecologia , Pesquisa
10.
Oecologia ; 188(1): 23-39, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29845353

RESUMO

Seagrasses are key marine foundation species, currently declining due to the compounded action of global and regional anthropogenic stressors. Eutrophication has been associated with seagrass decline, while grazing has been traditionally considered to be a natural disturbance with a relatively low impact on seagrasses. In the recent years, this assumption has been revisited. Here, by means of a 16-month field-experiment, we investigated the molecular mechanisms driving the long-term response of Posidonia oceanica to the combination of nutrient enrichment, either as a chronic (press) or pulse disturbance, and herbivory. Changes in expression levels of 19 target genes involved in key steps of photosynthesis, nutrient assimilation, chlorophyll metabolism, oxidative-stress response and plant defense were evaluated through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). High herbivore pressure affected the molecular response of P. oceanica more dramatically than did enhanced nutrient levels, altering the expression of genes involved in plant tolerance and resistance traits, such as photosynthesis and defense mechanisms. Genes involved in carbon fixation and N assimilation modulated the response of plants to high nutrient levels. Availability of resources seems to modify P. oceanica response to herbivory, where the upregulation of a nitrate transporter gene was accompanied by the decline in the expression of nitrate reductase in the leaves, suggesting a change in plant-nutrient allocation strategy. Finally, press and pulse fertilizations altered nitrate uptake and reduction-related genes in opposite ways, suggesting that taking into account the temporal regime of nutrient loading is important to assess the physiological response of seagrasses to eutrophication.


Assuntos
Alismatales , Herbivoria , Nutrientes , Fotossíntese , Folhas de Planta
11.
Oecologia ; 186(4): 1137-1152, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29357032

RESUMO

Seagrasses are globally declining and often their loss is due to synergies among stressors. We investigated the interactive effects of eutrophication and burial on the Mediterranean seagrass, Posidonia oceanica. A field experiment was conducted to estimate whether shoot survival depends on the interactive effects of three levels of intensity of both stressors and to identify early changes in plants (i.e., morphological, physiological and biochemical, and expression of stress-related genes) that may serve to detect signals of imminent shoot density collapse. Sediment burial and nutrient enrichment produced interactive effects on P. oceanica shoot survival, as high nutrient levels had the potential to accelerate the regression of the seagrass exposed to high burial (HB). After 11 weeks, HB in combination with either high or medium nutrient enrichment caused a shoot loss of about 60%. Changes in morphology were poor predictors of the seagrass decline. Likewise, few biochemical variables were associated with P. oceanica survival (the phenolics, ORAC and leaf δ34S). In contrast, the expression of target genes had the highest correlation with plant survival: photosynthetic genes (ATPa, psbD and psbA) were up-regulated in response to high burial, while carbon metabolism genes (CA-chl, PGK and GADPH) were down-regulated. Therefore, die-offs due to high sedimentation rate in eutrophic areas can only be anticipated by altered expression of stress-related genes that may warn the imminent seagrass collapse. Management of local stressors, such as nutrient pollution, may enhance seagrass resilience in the face of the intensification of extreme climate events, such as floods.


Assuntos
Alismatales , Carbono , Eutrofização , Fotossíntese , Folhas de Planta
12.
Proc Natl Acad Sci U S A ; 111(23): 8524-9, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912168

RESUMO

Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models--which assume ecological equivalence of species--to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Assuntos
Algoritmos , Biodiversidade , Biologia Marinha/métodos , Modelos Biológicos , Clima Frio , Geografia , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Clima Tropical
13.
Artigo em Inglês | MEDLINE | ID: mdl-39300809

RESUMO

Rhodolith beds are diverse and globally distributed habitats. Nonetheless, the role of rhodoliths in structuring the associated species community through a hierarchy of positive interactions is yet to be recognised. In this review, we provide evidence that rhodoliths can function as foundation species of multi-level facilitation cascades and, hence, are fundamental for the persistence of hierarchically structured communities within coastal oceans. Rhodoliths generate facilitation cascades by buffering physical stress, reducing consumer pressure and enhancing resource availability. Due to large variations in their shape, size and density, a single rhodolith bed can support multiple taxonomically distant and architecturally distinct habitat-forming species, such as primary producers, sponges or bivalves, thus encompassing a broad range of functional traits and providing a wealth of secondary microhabitat and food resources. In addition, rhodoliths are often mobile, and thus can redistribute associated species, potentially expanding the distribution of species with short-distance dispersal abilities. Key knowledge gaps we have identified include: the experimental assessment of the role of rhodoliths as basal facilitators; the length and temporal stability of facilitation cascades; variations in species interactions within cascades across environmental gradients; and the role of rhodolith beds as climate refugia. Addressing these research priorities will allow the development of evidence-based policy decisions and elevate rhodolith beds within marine conservation strategies.

14.
Nat Commun ; 15(1): 1822, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418445

RESUMO

Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization.


Assuntos
Conservação dos Recursos Naturais , Peixes , Animais , Humanos , Peixes/fisiologia , Oceanos e Mares , Clima , Ecossistema , Recifes de Corais
15.
Nat Commun ; 15(1): 2126, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459105

RESUMO

Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.


Assuntos
Biodiversidade , Invertebrados , Animais , Oceanos e Mares , Peixes , Temperatura , Água , Ecossistema , Aquecimento Global
16.
Ecology ; 94(5): 1102-11, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858650

RESUMO

Ecological tests of 1/f-noise models have advanced our understanding of how environmental fluctuations affect population abundance and species distributions. Most empirical studies have been conducted under controlled laboratory conditions and have focused on individual drivers. We present the results of a four-year field experiment in which canopy presence/absence and the availability of primary space were manipulated as red-noise and white-noise spatial processes, respectively, to evaluate their separate and compounded effects on algal turf distribution in a rocky intertidal community. Algal turfs closely tracked spatial variation in canopy distribution, displaying a reddened spectrum of spatial variation. Surprisingly, white-noise clearings also induced a red-shift in turf distribution, a pattern that was related to a nonlinear relation between gap size and turf colonization. The two disturbances interacted antagonistically, dampening the red-shift of turf distribution. Our results provide evidence of experimentally induced shifts in the spectrum of a spatial variable under natural environmental conditions.


Assuntos
Ecossistema , Oceanos e Mares , Phaeophyceae/fisiologia , Demografia , Phaeophyceae/classificação
17.
Sci Total Environ ; 862: 160753, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513231

RESUMO

Urban infrastructures can provide 'novel' habitats for marine and terrestrial animals and plants, enhancing their ability to adapt to urban environments. In particular, coastal infrastructures characterized by a complex three-dimensional morphology, such as breakwaters, could provide species refuges and food. We investigated the role of breakwaters in providing habitat for vertebrates and plants, and the influence of anthropogenic litter in regulating the value of these structures as habitat. We sampled vertebrate and plant species and quantified the amount of anthropogenic litter on breakwaters and adjacent rocky habitats at several sites in three different countries (Italy, Spain and Chile). We found breakwaters to accumulate more litter items (e.g. especially plastics) than adjacent rocky habitats by means of their large-scale (i.e., 1 m) structural complexity. Birds, which used the artificial infrastructure as transitory habitat, reached similar abundances in breakwaters compared with adjacent rocky platforms. In contrast, synanthropic mammal species, such as Rattus norvegicus and feral cats, were slightly more frequent on breakwaters and appeared to use them as permanent habitat. Plants were frequent in the upper zone of breakwaters and, even though many macrophyte species can trap litter, their cover correlated negatively with anthropogenic litter density. Therefore, breakwaters provide either transitory or permanent habitats for different species, despite functioning as a sink for anthropogenic litter. Thus, new infrastructure should be designed with lower structural complexity in their supralittoral zone limiting the proliferation of synanthropic species. In addition, restricting public access to sensitive areas and enforcing littering fines could enhance the ecological value of these novel habitats by reducing the benefits to pest species.


Assuntos
Ecossistema , Vertebrados , Animais , Gatos , Ratos , Plásticos , Chile , Itália , Monitoramento Ambiental , Mamíferos
18.
Mar Environ Res ; 188: 106035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267663

RESUMO

Brown algae of the genus Ericaria are habitat formers on Mediterranean rocky shores supporting marine biodiversity and ecosystem functioning. Their population decline has prompted attempts for restoration of threatened populations. Although epilithic microbial biofilms (EMBs) are determinant for macroalgal settlement, their role in regulating the recovery of populations through the recruitment of new thalli is yet to be explored. In this study, we assessed variations in microbial biofilms composition on the settlement of Ericaria amentacea at sites exposed to different human pressures. Artificial fouling surfaces were deployed in two areas at each of three study sites in the Ligurian Sea (Capraia Island, Secche della Meloria and the mainland coast of Livorno), to allow bacterial biofilm colonization. In the laboratory, zygotes of E. amentacea were released on these surfaces to evaluate the survival of germlings. The EMB's composition was assessed through DNA metabarcoding analysis, which revealed a difference between the EMB of Capraia Island and that of Livorno. Fouling surfaces from Capraia Island had higher rates of zygote settlement than the other two sites. This suggests that different environmental conditions can influence the EMB composition on substrata, possibly influencing algal settlement rate. Assessing the suitability of rocky substrata for E. amentacea settlement is crucial for successful restoration.


Assuntos
Ecossistema , Phaeophyceae , Animais , Humanos , Biodiversidade , Biofilmes
19.
Ecol Evol ; 13(3): e9929, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969938

RESUMO

Abiotic environmental conditions can significantly influence the way species interact. In particular, plant-herbivore interactions can be substantially dependent on temperature and nutrients. The overall product of these relationships is critical for the fate and stability of vegetated ecosystems like marine forests. The last few decades have seen a rapid spread of barrens on temperate rocky reefs mainly as a result of overgrazing. The ecological feedbacks that characterize the barren state involve a different set of interactions than those occurring in vegetated habitats. Reversing these trends requires a proper understanding of the novel feedbacks and the conditions under which they operate. Here, we explored the role of a secondary herbivore in reinforcing the stability of barrens formed by sea urchin overgrazing under different nutrient conditions. Combining comparative and experimental studies in two Mediterranean regions characterized by contrasting nutrient conditions, we assessed: (i) if the creation of barren areas enhances limpet abundance, (ii) the size-specific grazing impact by limpets, and (iii) the ability of limpets alone to maintain barrens. Our results show that urchin overgrazing enhanced limpet abundance. The effects of limpet grazing varied with nutrient conditions, being up to five times more intense under oligotrophic conditions. Limpets were able to maintain barrens in the absence of sea urchins only under low-nutrient conditions, enhancing the stability of the depauperate state. Overall, our study suggests a greater vulnerability of subtidal forests in oligotrophic regions of the Mediterranean and demonstrates the importance of environment conditions in regulating feedbacks mediated by plant-herbivore interactions.

20.
J Exp Biol ; 215(Pt 6): 977-85, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357591

RESUMO

Understanding how species and environments respond to global anthropogenic disturbances is one of the greatest challenges for contemporary ecology. The ability to integrate modeling, correlative and experimental approaches within individual research programs will be key to address large-scale, long-term environmental problems. Scale-transition theory (STT) enables this level of integration, providing a powerful framework to link ecological patterns and processes across spatial and temporal scales. STT predicts the large-scale (e.g. regional) behavior of a system on the basis of nonlinear population models describing local (e.g. patch-scale) dynamics and the interaction between these nonlinearities and spatial variation in population abundance or environmental conditions. Here we use STT to predict the dynamics of turf-forming algae on rocky shores at Capraia Island, in the northwest Mediterranean. We developed a model of algal turf dynamics based on density-dependent growth that included the effects of local interactions with canopy algae. The model was parameterized with field data and used to scale up the dynamics of algal turfs from the plot scale (20×20 cm) to the island scale (tens of km). The interaction between nonlinear growth and spatial variance in cover of turfing algae emerged as a key term to translate the local dynamics up to the island scale. The model successfully predicted short-term and long-term mean values of turf cover estimated independently from a separate experiment. These results illustrate how STT can be used to identify the relevant mechanisms that drive large-scale changes in ecological communities. We argue that STT can contribute significantly to the connection between biomechanics and ecology, a synthesis that is at the core of the emerging field of ecomechanics.


Assuntos
Ecossistema , Eucariotos/crescimento & desenvolvimento , Sedimentos Geológicos , Modelos Biológicos , Geografia , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA