Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
FASEB J ; 38(16): e23893, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39177943

RESUMO

Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.


Assuntos
Linfócitos B , Medula Óssea , Memória Imunológica , Leishmania infantum , Leishmaniose Visceral , Linfopoese , Baço , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Animais , Baço/imunologia , Baço/parasitologia , Leishmania infantum/imunologia , Leishmania infantum/fisiologia , Camundongos , Medula Óssea/parasitologia , Medula Óssea/imunologia , Linfócitos B/imunologia , Feminino , Camundongos Endogâmicos BALB C
2.
Artigo em Inglês | MEDLINE | ID: mdl-39284370

RESUMO

BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) is a complex monogenic disease caused by recessive mutations in the ADA2 gene. DADA2 exhibits a broad clinical spectrum encompassing vasculitis, immunodeficiency, and hematological abnormalities. Yet, the impact of DADA2 on the bone marrow (BM) microenvironment is largely unexplored. OBJECTIVE: This study comprehensively examined the BM and peripheral blood of pediatric and adult patients with DADA2 presenting rheumatologic/immunologic symptoms or severe hematological manifestations. METHODS: Immunophenotyping of hematopoietic stem cells (HSCs), progenitor cells, and mature cell populations was performed for 18 patients with DADA2. We also conducted a characterization of the mesenchymal stromal cells (MSCs). RESULTS: Our study revealed a significant decrease in primitive HSCs and progenitor cells, alongside their reduced clonogenic capacity and multilineage differentiation potential. These BM defects were evident in patients with both severe and non-severe hematological manifestations, including pediatric patients, demonstrating that BM disruption can emerge silently and early on, even in patients who do not show obvious hematological symptoms. Beyond stem cells, there was a reduction in mature cell populations in the BM and peripheral blood, affecting myeloid, erythroid, and lymphoid populations. Furthermore, BM MSCs in DADA2 patients exhibited reduced clonogenic and proliferation capabilities and were more prone to undergo cellular senescence marked by elevated DNA damage. CONCLUSION: Our exploration into the BM landscape of DADA2 patients sheds light on the critical hematological dimension of the disease and emphasizes the importance of vigilant monitoring, even in the case of subclinical presentation.

3.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555716

RESUMO

The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions are sought by using codon-optimized red-shifted luciferases that yield higher expression levels and produce relatively more red or near-infrared light, or by using modified bioluminescent substrates with enhanced cell permeability and improved luminogenic or pharmacokinetic properties. In this study, the in vitro and in vivo efficacy of two modified bioluminescent substrates, CycLuc1 and AkaLumine-HCl, were compared with that of D-luciferin as a gold standard. Comparisons were made in experimental and insect-transmitted animal models of leishmaniasis (caused by intracellular Leishmania species) and African trypanosomiasis (caused by extracellular Trypanosoma species), using parasite strains expressing the red-shifted firefly luciferase PpyRE9. Although the luminogenic properties of AkaLumine-HCl and D-luciferin for in vitro parasite detection were comparable at equal substrate concentrations, AkaLumine-HCl proved to be unsuitable for in vivo infection follow-up due to high background signals in the liver. CycLuc1 presented a higher in vitro luminescence compared to the other substrates and proved to be highly efficacious in vivo, even at a 20-fold lower dose than D-luciferin. This efficacy was consistent across infections with the herein included intracellular and extracellular parasitic organisms. It can be concluded that CycLuc1 is an excellent and broadly applicable alternative for D-luciferin, requiring significantly lower doses for in vivo bioluminescent imaging in rodent models of leishmaniasis and African trypanosomiasis.


Assuntos
Parasitos , Tripanossomíase Africana , Animais , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Parasitos/metabolismo , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Luciferinas , Luciferina de Vaga-Lumes/metabolismo
4.
J Antimicrob Chemother ; 74(2): 395-406, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412253

RESUMO

Objectives: Miltefosine is currently the only oral drug for visceral leishmaniasis, and although deficiency in an aminophospholipid/miltefosine transporter (MT) is sufficient to elicit drug resistance, very few naturally miltefosine-resistant (MIL-R) strains have yet been isolated. This study aimed to make a detailed analysis of the impact of acquired miltefosine resistance and miltefosine treatment on in vivo infection. Methods: Bioluminescent versions of a MIL-R strain and its syngeneic parental line were generated by integration of the red-shifted firefly luciferase PpyRE9. The fitness of both lines was compared in vitro (growth rate, metacyclogenesis and macrophage infectivity) and in BALB/c mice through non-invasive bioluminescence imaging under conditions with and without drug pressure. Results: This study demonstrated a severe fitness loss of MT-deficient parasites, resulting in a complete inability to multiply and cause a typical visceral leishmaniasis infection pattern in BALB/c mice. The observed fitness loss could not be rescued by host immune suppression with cyclophosphamide, whereas episomal reconstitution with a wild-type MT restored parasite virulence, hence linking parasite fitness to MT mutation. Remarkably, in vivo miltefosine treatment or in vitro miltefosine pre-exposure significantly rescued MIL-R parasite virulence. The in vitro pre-exposed MIL-R promastigotes showed a longer and more slender morphology, suggesting an altered membrane composition. Conclusions: The profound fitness loss of MT-deficient parasites most likely explains the low frequency of MIL-R clinical isolates. The observation that miltefosine can reverse this phenotype indicates a drug dependency of the MT-deficient parasites and emphasizes the importance of resistance profiling prior to miltefosine administration.


Assuntos
Aptidão Genética/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Macrófagos/parasitologia , Proteínas de Membrana Transportadoras/genética , Fosforilcolina/análogos & derivados , Animais , Feminino , Terapia de Imunossupressão , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Visceral/parasitologia , Luciferases/metabolismo , Medições Luminescentes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Testes de Sensibilidade Parasitária , Fosforilcolina/farmacologia , Virulência/efeitos dos fármacos
5.
Cells ; 12(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37443800

RESUMO

Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Inflamassomos/metabolismo , Imunidade Inata , Inflamação
6.
Commun Biol ; 5(1): 626, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752645

RESUMO

Given the discontinuation of various first-line drugs for visceral leishmaniasis (VL), large-scale in vivo drug screening, establishment of a relapse model in rodents, immunophenotyping, and transcriptomics were combined to study persistent infections and therapeutic failure. Double bioluminescent/fluorescent Leishmania infantum and L. donovani reporter lines enabled the identification of long-term hematopoietic stem cells (LT-HSC) as a niche in the bone marrow with remarkably high parasite burdens, a feature confirmed for human hematopoietic stem cells (hHSPC). LT-HSC are more tolerant to antileishmanial drug action and serve as source of relapse. A unique transcriptional 'StemLeish' signature in these cells was defined by upregulated TNF/NF-κB and RGS1/TGF-ß/SMAD/SKIL signaling, and a downregulated oxidative burst. Cross-species analyses demonstrated significant overlap with human VL and HIV co-infected blood transcriptomes. In summary, the identification of LT-HSC as a drug- and oxidative stress-resistant niche, undergoing a conserved transcriptional reprogramming underlying Leishmania persistence and treatment failure, may open therapeutic avenues for leishmaniasis.


Assuntos
Leishmaniose Visceral , Parasitos , Animais , Células-Tronco Hematopoéticas , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Recidiva , Falha de Tratamento
7.
PLoS Negl Trop Dis ; 15(7): e0009622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292975

RESUMO

BACKGROUND: Miltefosine (MIL) is currently the only oral drug available to treat visceral leishmaniasis but its use as first-line monotherapy has been compromised by an increasing treatment failure. Despite the scarce number of resistant clinical isolates, MIL-resistance by mutations in a single aminophospholipid transporter gene can easily be selected in a laboratory environment. These mutations result in a reduced survival in the mammalian host, which can partially be restored by exposure to MIL, suggesting a kind of drug-dependency. METHODOLOGY/PRINCIPAL FINDINGS: To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo survival, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of MIL-resistant (MIL-R) and syngeneic MIL-sensitive (MIL-S) Leishmania infantum. Results in C57Bl/6 and BALB/c mice show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-γ levels, finally resulting in a less efficient establishment in liver macrophages. The elevated IFN-γ levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites. In addition, we demonstrated that MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-γ production. CONCLUSIONS/SIGNIFICANCE: Differential induction of innate immune responses in the liver was found to underlie the attenuated phenotype of a MIL-R parasite and its peculiar feature of drug-dependency. The impact of MIL on hepatic NK and NKT activation and IFN-γ production following recognition of a MIL-R strain indicates that this mechanism may sustain infections with resistant parasites and contribute to treatment failure.


Assuntos
Resistência a Medicamentos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/patogenicidade , Fosforilcolina/análogos & derivados , Animais , Antiprotozoários/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/genética , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leishmaniose Visceral , Fígado/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/fisiologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Neutrófilos , Testes de Sensibilidade Parasitária , Fosforilcolina/farmacologia , Baço/citologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32388220

RESUMO

OBJECTIVES: This study evaluated the implications of clinically acquired miltefosine resistance (MIL-R) by assessing virulence in mice and sand flies to reveal the potential of MIL-R strains to circulate. METHODS: Experimental infections with the MIL-R clinical Leishmania infantum isolate MHOM/FR/2005/LEM5159, having a defect in the LiROS3 subunit of the MIL-transporter, and its syngeneic experimentally reconstituted MIL-S counterpart (LEM5159LiROS3) were performed in BALB/c mice and Lutzomyia longipalpis and Phlebotomus perniciosus sand flies. In mice, the amastigote burdens in liver and spleen were compared microscopically using Giemsa smears and by bioluminescent imaging. During the sand fly infections, the percentage of infected flies, parasite load, colonization of the stomodeal valve and metacyclogenesis were evaluated. The stability of the MIL-R phenotype after sand fly and mouse passage was determined as well. RESULTS: The fitness of the MIL-R strain differed between the mouse and sand fly infection model. In mice, a clear fitness loss was observed compared to the LiROS3-reconstituted susceptible strain. This defect could be rescued by episomal reconstitution with a wildtype LiROS3 copy. However, this fitness loss was not apparent in the sand fly vector, resulting in metacyclogenesis and efficient colonization of the stomodeal valve. Resistance was stable after passage in both sand fly and mouse. CONCLUSION: The natural MIL-R strain is significantly hampered in its ability to multiply and cause a typical visceral infection pattern in BALB/c mice. However, this LiROS3-deficient strain efficiently produced mature infections and metacyclic promastigotes in the sand fly vector highlighting the transmission potential of this particular MIL-R clinical Leishmania strain.


Assuntos
Resistência a Medicamentos/genética , Insetos Vetores/parasitologia , Leishmania infantum , Fosforilcolina/análogos & derivados , Animais , Antiprotozoários/farmacologia , Genes de Protozoários , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmania infantum/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/patologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C/parasitologia , Phlebotomus/parasitologia , Fosforilcolina/farmacologia , Psychodidae/parasitologia
9.
Front Immunol ; 11: 1113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582193

RESUMO

Type I interferons (IFNs) induced by an endogenous Leishmania RNA virus or exogenous viral infections have been shown to exacerbate infections with New World Cutaneous Leishmania parasites, however, the impact of type I IFNs in visceral Leishmania infections and implicated mechanisms remain to be unraveled. This study assessed the impact of type I IFN on macrophage infection with L. infantum and L. donovani and the implication of sialoadhesin (Siglec-1/CD169, Sn) as an IFN-inducible surface receptor. Stimulation of bone marrow-derived macrophages with type I IFN (IFN-α) significantly enhanced susceptibility to infection of reference laboratory strains and a set of recent clinical isolates. IFN-α particularly enhanced promastigote uptake. Enhanced macrophage susceptibility was linked to upregulated Sn surface expression as a major contributing factor to the infection exacerbating effect of IFN-α. Stimulation experiments in Sn-deficient macrophages, macrophage pretreatment with a monoclonal anti-Sn antibody or a novel bivalent anti-Sn nanobody and blocking of parasites with soluble Sn restored normal susceptibility levels. Infection of Sn-deficient mice with bioluminescent L. infantum promastigotes revealed a moderate, strain-dependent role for Sn during visceral infection under the used experimental conditions. These data indicate that IFN-responsive Sn expression can enhance the susceptibility of macrophages to infection with visceral Leishmania promastigotes and that targeting of Sn may have some protective effects in early infection.


Assuntos
Interferon-alfa/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Feminino , Leishmania/imunologia , Leishmaniose Visceral/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Regulação para Cima
10.
Parasit Vectors ; 13(1): 96, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087758

RESUMO

BACKGROUND: Since the introduction of miltefosine (MIL) as first-line therapy in the kala-azar elimination programme in the Indian subcontinent, treatment failure rates have been increasing. Since parasite infectivity and virulence may become altered upon treatment relapse, this laboratory study assessed the phenotypic effects of repeated in vitro and in vivo MIL exposure. METHODS: Syngeneic Leishmania donovani lines either or not exposed to MIL were compared for drug susceptibility, rate of promastigote multiplication and metacyclogenesis, macrophage infectivity and behaviour in the sand fly vector, Lutzomyia longipalpis. RESULTS: Promastigotes of both in vitro and in vivo MIL-selected strains displayed a slightly reduced drug susceptibility that was associated with a reduced MIL-accumulation linked to a lower copy number (disomic state) of chromosome 13 harboring the miltefosine transporter (LdMT) gene. In vitro selected promastigotes showed a lower rate of metacyclogenesis whereas the in vivo derived promastigotes displayed a moderately increased growth rate. Repeated MIL exposure did neither influence the parasite load nor metacyclogenesis in the sand fly vector. CONCLUSIONS: Recurrent in vitro and in vivo MIL exposure evokes a number of very subtle phenotypic and genotypic changes which could make promastigotes less susceptible to MIL without attaining full resistance. These changes did not significantly impact on infection in the sand fly vector.


Assuntos
Antiprotozoários/farmacologia , Insetos Vetores/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Fosforilcolina/análogos & derivados , Psychodidae/parasitologia , Aclimatação , Animais , Resistência a Medicamentos , Humanos , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Testes de Sensibilidade Parasitária , Fenótipo , Fosforilcolina/farmacologia , Virulência
11.
J Mol Diagn ; 20(2): 253-263, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355825

RESUMO

Several methods have been developed for the detection of Leishmania, mostly targeting the minicircle kinetoplast DNA (kDNA). A new RNA real-time quantitative PCR (qPCR) assay was developed targeting the conserved and highly expressed spliced-leader (SL) mini-exon sequence. This study compared the limits of detection of various real-time PCR assays in hamsters infected with Leishmania infantum, in spiked human blood, and in clinical blood samples from visceral leishmaniasis patients. The SL-RNA assay showed an excellent analytical sensitivity in tissues (0.005 and 0.002 parasites per mg liver and spleen, respectively) and was not prone to false-positive reactions. Evaluation of the SL-RNA assay on clinical samples demonstrated lower threshold cycle values than the kDNA qPCR, an excellent interrun stability of 97%, a 93% agreement with the kDNA assay, and an estimated sensitivity, specificity, and accuracy of 93.2%, 94.3%, and 93.8%, respectively. The SL-RNA qPCR assay was equally efficient for detecting Leishmania major, Leishmania tropica, Leishmania mexicana, Leishmania guayensis, Leishmania panamensis, Leishmania braziliensis, L. infantum, and Leishmania donovani and revealed similar SL-RNA levels in the different species and the occurrence of polycistronic SL-containing transcripts in Viannia species. Collectively, this single SL-RNA qPCR assay enables universal Leishmania detection and represents a particularly useful addition to the widely used kDNA assay in clinical studies in which the detection of viable parasites is pivotal to assess parasitological cure.


Assuntos
DNA de Cinetoplasto/análise , Leishmania infantum/genética , Leishmaniose Visceral/sangue , Leishmaniose Visceral/diagnóstico , Mesocricetus/parasitologia , RNA Líder para Processamento/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Criança , Pré-Escolar , Cricetinae , Confiabilidade dos Dados , Feminino , Humanos , Fígado/parasitologia , Sensibilidade e Especificidade , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA