Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1314-1326, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170918

RESUMO

Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Sistema Nervoso Central/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ciclopropanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos , Ácidos Carboxílicos
2.
Eur J Med Chem ; 266: 116157, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245976

RESUMO

The metabotropic glutamate (Glu) receptors (mGluRs) are G-protein coupled receptors, which play a central role in modulating excitatory neurotransmission in the central nervous system (CNS). Thus, the development of tool compounds thereto, continues to interest the scientific community. In this study, we report the design and synthesis of new conformationally restricted 2-aminoadipic acid (2AA) 2-4, and glutamic acid 5, 6 analogs, which share the cyclopropane ring as the restrictor. The analogs were characterized at rat mGlu1-8 in an IP-One functional assay. While the 2AA analogs 3a, 4a and CCG-I analog 5a were shown to be selective mGlu2 agonists with low micromolar potencies, CCG-II analog 5b was shown to be a potent full agonist at mGlu2 (EC50 = 82 nM) with ∼15-fold selectivity over mGlu3, >25-fold selectivity over group III, and >60-fold selectivity over group I subtypes. An in silico study was performed to address this significant change (>3500 fold) in potency upon introduction of this methyl group (L-CCG-II vs 5b).


Assuntos
Aminoácidos , Receptores de Glutamato Metabotrópico , Ratos , Animais , Aminoácidos/farmacologia , Glicina , Receptores de Glutamato Metabotrópico/agonistas , Ácido Glutâmico/farmacologia , Sistema Nervoso Central
3.
J Med Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133077

RESUMO

Twenty-one simplified analogues of the natural product domoic acid were designed, synthesized, and then characterized at homomeric kainic acid (KA) receptors (GluK1-3,5). LBG20304 displays a high affinity for homomeric GluK5 receptors (IC50 = 432 nM) with a >40-fold selectivity over homomeric GluK1-3 subtypes and ≫100-fold selectivity over native AMPA and N-methyl d-aspartate receptors. Functional studies of LBG20304 on heteromeric GluK2/5 receptors show no agonist or antagonist functional response at 10 µM, while a concentration of 100 µM at neuronal slices (rat) shows low agonist activity. A molecular dynamics simulation of LBG20304, in a homology model of GluK5, suggests specific interactions with the GluK5 receptor and an occluded ligand binding domain, which is translated to agonist or partial agonist activity. LBG20304 is a new compound for the study of the role and function of the KA receptors with the aim of understanding the involvement of these receptors in health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA