RESUMO
We review what is known about amphibian limb regeneration from the prospective of developing strategies for the induction of regeneration in adult mammals. Prominent in urodele amphibian limb regeneration is the formation of a blastema of undifferentiated cells that goes on to reform the limb. The blastema shares many properties with the developing limb bud; thus, the outgrowth phase of regeneration can be thought of as cells going through development again, i.e., redevelopment. Getting to a redevelopment phase in mammals would be a major breakthrough given our extensive understanding of limb development. The formation of the blastema itself represents a transition phase in which limb cells respond to injury by dedifferentiating to become embryonic limb progenitor cells that can undergo redevelopment. During this phase, rapid wound closure is followed by the dedifferentiation of limb cells to form the blastema. Thus, the regeneration process can be divided into a wound-healing/dedifferentiation phase and a redevelopment phase, and we propose that the interface between the wound-healing response and gaining access to developmentally regulated programs (dedifferentiation) lies at the heart of the regeneration problem in mammals. In urodele amphibians, dedifferentiation can occur in all of the tissues of the limb; however, numerous studies lead us to focus on the epidermis, the dermis, and muscle as key regulators of regeneration. Among higher vertebrates, the digit tip in mammals, including humans, is regeneration-competent and offers a unique mammalian model for regeneration. Recent genetic studies in mice identify the Msx1 gene as playing a critical role in the injury response leading to digit tip regeneration. The results from regeneration studies ranging from amphibians to mammals can be integrated to develop a roadmap for mammalian regeneration that has as its focus understanding the phenomenon of dedifferentiation.
Assuntos
Extremidades/fisiologia , Regeneração/fisiologia , Vertebrados/fisiologia , Animais , Cartilagem/fisiologia , Derme/fisiologia , Extremidades/lesões , Humanos , Músculos/fisiologiaRESUMO
Pigpen, a nuclear protein with RNA-binding motifs and a putative transcriptional activation domain (TAD), is expressed at high levels in proliferating endothelial cells and expression is down-regulated when cells adopt a quiescent or differentiated phenotype. We cloned the mouse homolog of pigpen and investigated the regulation of its expression during embryogenesis. In situ hybridization demonstrated that a broad pattern of pigpen expression became restricted during tooth formation in the mandible. In the eye, pigpen showed a spatial restriction to the more proliferating and less differentiated regions of the lens and neural retina. Expression was also restricted in the developing vibrissae, lung, and kidney, all sites where epithelial-mesenchymal interactions are vital for morphogenesis. In vitro assays, that focused on the mandible and tooth development, indicated that epithelial signals, mediated by fibroblast growth factor-8, were required to maintain pigpen expression in the mandibular mesenchyme, whereas bone morphogenetic protein-4 negatively regulated expression in that tissue during early odontogenesis. At the protein level, immunocytochemistry demonstrated that Pigpen was expressed diffusely in the cytoplasm and more concentratedly in focal granules within the nuclei of mouse embryonic cells. Lastly, CAT reporter assays showed that the N-terminus of mouse pigpen encodes an active TAD. These data suggest that mouse Pigpen may activate transcription in vivo in response to specific growth factor signals and regulate proliferation and/or differentiation events during mouse organogenesis.