Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cereb Cortex ; 32(1): 41-62, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34255833

RESUMO

Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.


Assuntos
Córtex Motor , Animais , Callithrix , Giro do Cíngulo , Vias Neurais/fisiologia , Lobo Parietal
2.
Cereb Cortex ; 31(10): 4595-4611, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33939798

RESUMO

The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.


Assuntos
Claustrum/fisiologia , Lobo Parietal/fisiologia , Vias Aferentes/fisiologia , Animais , Mapeamento Encefálico , Macaca fascicularis , Macaca mulatta , Macaca nemestrina , Movimento/fisiologia , Neurônios Aferentes/fisiologia , Estimulação Luminosa , Córtex Somatossensorial/fisiologia
3.
Cereb Cortex ; 23(8): 1901-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22735155

RESUMO

Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans.


Assuntos
Neurônios/citologia , Córtex Pré-Frontal/anatomia & histologia , Vias Aferentes/anatomia & histologia , Animais , Callithrix , Feminino , Masculino
4.
J Neurosci ; 31(5): 1790-801, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289189

RESUMO

The goal of the present study was to elucidate the corticocortical afferent connections of area V6Av, the ventral subregion of area V6A, using retrograde neuronal tracers combined with physiological and cytoarchitectonic analyses in the macaque monkey. The results revealed that V6Av receives many of its afferents from extrastriate area V6, and from regions of areas V2, V3, and V4 subserving peripheral vision. Additional extrastriate visual projections originate in dorsal stream areas MT and MST. Area V6Av does not receive projections directly from V1; such connections were only observed when the injection sites crossed into area V6. The strongest parietal lobe afferents originate in fields V6Ad, PGm, MIP (medial intraparaietal), and PG, with frontal lobe afferents originating from the frontal eye field, caudal area 46, and the rostral subdivision of the dorsal premotor area (F7). A comparison of their respective connections supports the view that V6Av is functionally distinct from adjacent areas (V6 and V6Ad). The strong afferents from V6 and other extrastriate areas are consistent with physiological data that suggest that V6Av is primarily a visual area, supporting the notion that V6Av is part of a dorsomedial cortical network performing fast form and motion analyses needed for the visual guidance of action.


Assuntos
Vias Aferentes/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Percepção Visual , Animais , Eletrofisiologia , Olho , Lobo Frontal/anatomia & histologia , Mãos , Macaca , Microscopia de Fluorescência , Testes Neuropsicológicos , Lobo Parietal/anatomia & histologia , Vias Visuais/anatomia & histologia
5.
Cereb Cortex ; 21(8): 1712-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21139076

RESUMO

We used fluorescent tracers to map the pattern of cortical afferents to frontal area 10 in marmosets. Dense projections originated in several subdivisions of orbitofrontal cortex, in the medial frontal cortex (particularly areas 14 and 32), and in the dorsolateral frontal cortex (particularly areas 8Ad and 9). Major projections also stemmed, in variable proportions depending on location of the injection site, from both the inferior and superior temporal sensory association areas, suggesting a degree of audiovisual convergence. Other temporal projections included the superior temporal polysensory cortex, temporal pole, and parabelt auditory cortex. Medial area 10 received additional projections from retrosplenial, rostral calcarine, and parahippocampal areas, while lateral area 10 received small projections from the ventral somatosensory and premotor areas. There were no afferents from posterior parietal or occipital areas. Most frontal connections were balanced in terms of laminar origin, giving few indications of an anatomical hierarchy. The pattern of frontopolar afferents suggests an interface between high-order representations of the sensory world and internally generated states, including working memory, which may subserve ongoing evaluation of the consequences of decisions as well as other cognitive functions. The results also suggest the existence of functional differences between subregions of area 10.


Assuntos
Vias Aferentes/fisiologia , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vias Aferentes/anatomia & histologia , Animais , Mapeamento Encefálico/métodos , Callithrix , Corantes Fluorescentes , Lateralidade Funcional/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Marcadores do Trato Nervoso , Especificidade da Espécie
6.
Eur J Neurosci ; 34(2): 303-19, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21714814

RESUMO

The subcortical projections to the marmoset frontal pole were mapped with the use of fluorescent tracer injections. The main thalamic projections, which originated in both the magnocellular and parvocellular subdivisions of the mediodorsal nucleus, were topographically organized. Our results suggest the existence of a third, caudal subdivision of this nucleus, which is likely to be homologous to the macaque's pars densocellularis. A substantial, but not topographically organized, projection to Brodmann's area 10 originated in the medial part of the ventral anterior nucleus. Minor thalamic projections originated in the medial pulvinar nucleus and in the midline/intralaminar nuclei. Finally, the posterior thalamic group (including the limitans and suprageniculate nuclei) sent a small projection to rostral area 10 that has not previously been documented in primates. The main extrathalamic projections stemmed from the claustrum, which contained as many as 50% of all subcortical labelled neurons. Minor connections originated in the hypothalamus (mainly in the lateral anterior and lateral tuberal regions), dorsal periaqueductal grey matter, basal forebrain (nucleus basalis of Meynert and horizontal limb of the diagonal band of Broca), and amygdala (basal, accessory basal and lateral nuclei). The present results, combined with recent data on the cortical projections to area 10, reveal the frontal pole as a region that integrates information from multiple neural processing systems, including high-level sensory, limbic and working memory-related structures. Although the pattern of subcortical projections is similar to that previously described in the macaque, suggesting a homologous organization, the present data also suggest functional distinctions between medial and lateral sectors of area 10.


Assuntos
Mapeamento Encefálico/métodos , Callithrix/anatomia & histologia , Lobo Frontal/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Humanos , Núcleos Talâmicos/anatomia & histologia
7.
J Neurosci ; 29(14): 4548-63, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19357280

RESUMO

The dorsomedial area (DM), a subdivision of extrastriate cortex characterized by heavy myelination and relative emphasis on peripheral vision, remains the least understood of the main targets of striate cortex (V1) projections in primates. Here we placed retrograde tracer injections encompassing the full extent of this area in marmoset monkeys, and performed quantitative analyses of the numerical strengths and laminar patterns of its afferent connections. We found that feedforward projections from V1 and from the second visual area (V2) account for over half of the inputs to DM, and that the vast majority of the remaining connections come from other topographically organized visual cortices. Extrastriate projections to DM originate in approximately equal proportions from adjacent medial occipitoparietal areas, from the superior temporal motion-sensitive complex centered on the middle temporal area (MT), and from ventral stream-associated areas. Feedback from the posterior parietal cortex and other association areas accounts for <10% of the connections. These results do not support the hypothesis that DM is specifically associated with a medial subcircuit of the dorsal stream, important for visuomotor integration. Instead, they suggest an early-stage visual-processing node capable of contributing across cortical streams, much as V1 and V2 do. Thus, although DM may be important for providing visual inputs for guided body movements (which often depend on information contained in peripheral vision), this area is also likely to participate in other functions that require integration across wide expanses of visual space, such as perception of self-motion and contour completion.


Assuntos
Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Mapeamento Encefálico/métodos , Callithrix , Córtex Cerebral/fisiologia , Percepção de Movimento/fisiologia , Fatores de Tempo
8.
Brain Struct Funct ; 225(2): 853-870, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32078035

RESUMO

We studied the thalamic afferents to cortical areas in the precuneus using injections of retrograde fluorescent neuronal tracers in four male macaques (Macaca fascicularis). Six injections were within the limits of cytoarchitectural area PGm, one in area 31 and one in area PEci. Precuneate areas shared strong input from the posterior thalamus (lateral posterior nucleus and pulvinar complex) and moderate input from the medial, lateral, and intralaminar thalamic regions. Area PGm received strong connections from the subdivisions of the pulvinar linked to association and visual function (the medial and lateral nuclei), whereas areas 31 and PEci received afferents from the oral division of the pulvinar. All three cytoarchitectural areas also received input from subdivisions of the lateral thalamus linked to motor function (ventral lateral and ventral anterior nuclei), with area PEci receiving additional input from a subdivision linked to somatosensory function (ventral posterior lateral nucleus). Finally, only PGm received substantial limbic association afferents, mainly via the lateral dorsal nucleus. These results indicate that area PGm integrates information from visual association, motor and limbic regions of the thalamus, in line with a hypothesized role in spatial cognition, including navigation. By comparison, dorsal precuneate areas (31 and PEci) are more involved in sensorimotor functions, being akin to adjacent areas of the dorsal parietal cortex.


Assuntos
Neurônios/citologia , Lobo Parietal/citologia , Tálamo/citologia , Vias Aferentes/citologia , Animais , Macaca fascicularis , Masculino , Técnicas de Rastreamento Neuroanatômico
9.
Eur J Neurosci ; 30(4): 578-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19663937

RESUMO

The current hierarchical model of primate auditory cortical processing proposes a core of 'primary-like' areas, which is surrounded by secondary (belt) and tertiary (parabelt) regions. The rostrotemporal auditory cortical area (RT) remains the least well characterized of the three proposed core areas, and its functional organization has only recently come under scrutiny. Here we used injections of anterograde and retrograde tracers in the common marmoset (Callithrix jacchus) to examine the connectivity of RT and its adjacent areas. As expected from the current model, RT exhibited dense core-like reciprocal connectivity with the ventral division of the medial geniculate body, the rostral core area and the auditory belt, but had weaker connections with the parabelt. However, RT also projected to the ipsilateral rostromedial prefrontal cortex (area 10), the dorsal temporal pole and the ventral caudate nucleus, as well as bilaterally to the lateral nucleus of the amygdala. Thus, RT has connectivity with limbic structures previously believed to connect only with higher-order auditory association cortices, and is probably functionally distinct from the other core areas. While this view is consistent with a proposed role of RT in temporal integration, our results also indicate that RT could provide an anatomical 'shortcut' for processing affective content in auditory information.


Assuntos
Córtex Auditivo/anatomia & histologia , Corpos Geniculados/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Animais , Vias Auditivas/anatomia & histologia , Gânglios da Base/anatomia & histologia , Callithrix , Corantes Fluorescentes , Núcleo Mediodorsal do Tálamo/anatomia & histologia , Coloração e Rotulagem
10.
J Comp Neurol ; 506(5): 860-76, 2008 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-18076083

RESUMO

We used a combination of anatomical and physiological techniques to define the primary motor cortex (M1) of the marmoset monkey and its relationship to adjacent cortical fields. Area M1, defined as a region containing a representation of the entire body and showing the highest excitability to intracortical microstimulation, is architecturally heterogeneous: it encompasses both the caudal part of the densely myelinated "gigantopyramidal" cortex (field 4) and a lateral region, corresponding to the face representation, which is less myelinated and has smaller layer 5 pyramidal cells (field 4c). Rostral to M1 is a field that is strongly reminiscent of field 4 in terms of cyto- and myeloarchitecture but that in the marmoset is poorly responsive to microstimulation. Anatomical tracing experiments revealed that this rostral field is interconnected with visual areas of the posterior parietal cortex, whereas M1 itself has no such connections. For these reasons, we considered this field to be best described as part of the dorsal premotor cortex and adopted the designation 6Dc. Histological criteria were used to define other fields adjacent to M1, including medial and ventral subdivisions of the premotor cortex (fields 6M and 6V) and the rostral somatosensory field (area 3a), as well as a rostral subdivision of the dorsal premotor area (field 6Dr). These results suggest a basic plan underlying the histological organization of the caudal frontal cortex in different simian species, which has been elaborated during the evolution of larger species of primate by creation of further morphological and functional subdivisions.


Assuntos
Mapeamento Encefálico , Callithrix/anatomia & histologia , Lobo Frontal/anatomia & histologia , Córtex Motor/anatomia & histologia , Movimento/fisiologia , Vias Neurais/anatomia & histologia , Animais , Callithrix/fisiologia , Estimulação Elétrica , Feminino , Lobo Frontal/fisiologia , Masculino , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/citologia , Lobo Parietal/fisiologia
11.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379868

RESUMO

The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.


Assuntos
Macaca fascicularis/anatomia & histologia , Macaca nemestrina/anatomia & histologia , Bainha de Mielina , Neurônios Aferentes/citologia , Lobo Parietal/anatomia & histologia , Animais , Feminino , Corantes Fluorescentes , Masculino , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico
12.
J Comp Neurol ; 495(2): 149-72, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16435289

RESUMO

We describe the organization of the dorsolateral frontal areas in marmoset monkeys using a combination of architectural methods (Nissl, cytochrome oxidase, and myelin stains) and injections of fluorescent tracers in extrastriate areas (the second visual area [V2], the dorsomedial and dorsoanterior areas [DM, DA], the middle temporal area and middle temporal crescent [MT, MTc], and the posterior parietal cortex [area 7]). Cytoarchitectural field 8 comprises three subdivisions: 8Av, 8Ad, and 8B. The ventrolateral subdivision, 8Av, forms the principal source of frontal projections to the "dorsal stream," having connections with each of the injected visual areas. The cytoarchitectural characteristics of 8Av suggest that this subdivision corresponds to the marmoset's frontal eye field. The intermediate subdivision of area 8 (8Ad) has efferent projections to area 7, while the dorsomedial subdivision (8B) has few or no connections with extrastriate cortex. Area 46, located rostrolateral to area 8Av, has substantial connections with the medial extrastriate areas (DM, DA, and area 7) and with MT, while the cortex lateral to 8Av (area 12/45) projects primarily to MT and to the MTc. The rostromedial prefrontal (area 9) and frontopolar (area 10) regions have very few extrastriate projections. Finally, cells in dorsal area 6 (6d) have sparse projections to DM, MT, and the MTc, as well as strong projections to DA and to area 7. These results illuminate aspects of the evolutionary development of the primate frontal cortex, and serve as a basis for further research into cognitive functions using a marmoset model.


Assuntos
Mapeamento Encefálico , Callithrix/anatomia & histologia , Lobo Frontal/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Amidinas/metabolismo , Animais , Dextranos/metabolismo , Rodaminas/metabolismo , Coloração e Rotulagem/métodos
13.
Brain Struct Funct ; 221(3): 1573-89, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25633471

RESUMO

The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.


Assuntos
Neurônios/citologia , Lobo Parietal/citologia , Pulvinar/citologia , Córtex Visual/citologia , Vias Visuais/citologia , Animais , Macaca fascicularis , Masculino , Tálamo/citologia
14.
Neurosci Res ; 93: 72-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25498953

RESUMO

Precise descriptions of the anatomical pathways that link different areas of the cerebral cortex are essential to the understanding of the sensorimotor and association processes that underlie human actions, and their impairment in pathological situations. Many years of research in macaque monkeys have critically shaped how we currently think about cortical motor function in humans. However, it is important to obtain additional understanding about the homologies between cortical areas in human and various non-human primates, and in particular how evolutionary changes in connectivity within specific neural circuits impact on the capacity for different behaviors. Current research has converged on the New World marmoset monkey as an important animal model for cortical function and dysfunction, emphasizing advantages unique to this species. However, the motor repertoire of the marmoset differs from that of the macaque in many ways, including the capacity for skilled use of the hands. Here, we review current knowledge about the cortical frontal areas in marmosets, which are key to the generation and control of motor behaviors, with focus on comparative analyses. We note significant parallels with the macaque monkey, as well as a few potentially important differences, which suggest future directions for work involving architectonic and functional analyses.


Assuntos
Callithrix/anatomia & histologia , Lobo Frontal/anatomia & histologia , Animais , Lobo Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia
15.
J Comp Neurol ; 523(8): 1222-47, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556940

RESUMO

We studied the afferent connections of two cytoarchitectural subdivisions of the caudolateral frontal cortex, areas 6Va and 8C, in marmoset monkeys. These areas received connections from the same set of thalamic nuclei, including main inputs from the ventral lateral and ventral anterior complexes, but differed in their patterns of corticocortical connections. Areas 8C and 6Va had reciprocal interconnections, and received similar proportions of afferents from premotor areas 6M and 6DC, and from the prefrontal cortex. However, area 8C received stronger inputs from frontal areas that have been implicated in oculomotor functions, whereas area 6Va received stronger projections from the primary motor area. Somatosensory projections to area 6Va were generally stronger than those to area 8C, and originated from several areas; in contrast, only the second somatosensory area (S2) sent major inputs to area 8C. Finally, although both 6Va and 8C received major inputs from the rostral posterior parietal cortex (putative homologs of areas PE, PF, and PFG), area 8C also received a variety of smaller connections from posterior midline, caudal posterior parietal, and extrastriate areas. Statistical analyses revealed that the pattern of connections of area 8C is more akin to that characterizing a premotor area, rather than a prefrontal area. We conclude that cytoarchitectural area 6Va in the marmoset is similar to ventral premotor areas identified in other simian primates, and that area 8C corresponds to a specialized subdivision of the caudal premotor complex where visual information for the guidance of movements is likely to be emphasized.


Assuntos
Callithrix/anatomia & histologia , Córtex Cerebral/citologia , Neurônios/citologia , Tálamo/citologia , Animais , Feminino , Corantes Fluorescentes , Masculino , Vias Neurais/química , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso
16.
J Comp Neurol ; 476(1): 19-31, 2004 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-15236464

RESUMO

Presympathetic vasomotor adrenergic (C1) and nonadrenergic (non-C1) neurons in the rostral ventrolateral medulla (RVLM) provide the main excitatory drive to cardiovascular sympathetic preganglionic neurons in the spinal cord. C1 and non-C1 neurons contain cocaine- and amphetamine-regulated transcript (CART), suggesting that CART may be a common marker for RVLM presympathetic neurons. To test this hypothesis, we first used double-immunofluorescence staining for CART and tyrosine hydroxylase (TH) to quantify CART-immunoreactive (-IR) catecholamine and noncatecholamine neurons in the C1 region. Next, we quantified the proportion of CART-IR RVLM neurons that expressed Fos in response to a hypotensive stimulus, using peroxidase immunohistochemistry for Fos and dual immunofluorescence for CART and TH. Finally, we fluorescently detected CART immunoreactivity in electrophysiologically identified, juxtacellularly labeled RVLM presympathetic neurons. In the RVLM, 97% of TH-IR neurons were CART-IR, and 74% of CART-IR neurons were TH-IR. Nitroprusside infusion significantly increased the number of Fos-IR RVLM neurons compared with saline controls. In nitroprusside-treated rats, virtually all Fos/TH neurons in the RVLM were immunoreactive for CART (98% +/- 1.3%, SD; n = 7), whereas 29% +/- 8.3% of CART-positive, TH-negative neurons showed Fos immunoreactivity. Six fast (2.8-5.8 m/second, noncatecholamine)-, two intermediate (2.1 and 2.2 m/second)-, and five slow (<1 m/second, catecholamine)-conducting RVLM presympathetic vasomotor neurons were juxtacellularly labeled. After fluorescent detection of CART and biotinamide, all 13 neurons were found to be CART-IR. These results suggest that, in rat RVLM, all catecholamine and noncatecholamine presympathetic vasomotor neurons contain CART.


Assuntos
Catecolaminas/metabolismo , Vias Eferentes/metabolismo , Bulbo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso Simpático/metabolismo , Sistema Vasomotor/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Barorreflexo/fisiologia , Biomarcadores , Epinefrina/metabolismo , Imunofluorescência , Hipotensão/induzido quimicamente , Hipotensão/metabolismo , Masculino , Bulbo/citologia , Proteínas do Tecido Nervoso/genética , Condução Nervosa/fisiologia , Nitroprussiato/farmacologia , Norepinefrina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Medula Espinal/citologia , Medula Espinal/metabolismo , Sistema Nervoso Simpático/citologia , Tirosina 3-Mono-Oxigenase/metabolismo , Sistema Vasomotor/citologia
17.
Brain Res ; 970(1-2): 35-46, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12706246

RESUMO

GABA(B) receptors have been implicated in the GABAergic modulation of catecholaminergic and serotonergic pathways in the central nervous system. The GABA(B) receptor may require two subunits, GABA(B)R1 and GABA(B)R2, for functional activity. Using dual immunofluorescent labelling on adjacent cryostat sections, we investigated the presence of immunoreactivity for the GABA(B)R1 and GABA(B)R2 subunits in brainstem catecholamine (tyrosine hydroxylase-immunoreactive) and serotonin (tryptophan hydroxylase-immunoreactive) neurons. All neurons (>98%) examined in catecholamine groups A1, A2, A5, A6, C1, and serotonin groups B1-3 and B6-8 were immunoreactive for the GABA(B)R1 subunit. All A5 and A6 neurons (>97%) and at least 86% of A1, A2, C1, B2, B3, B7 and B8 neurons examined were GABA(B)R2-immunoreactive. The proportion of neurons with immunoreactivity for the GABA(B)R2 subunit varied between 0% and 99% for B1 neurons, and between 35% and 93% for B6 neurons. Statistical analysis showed that similar proportions of sampled neurons were immunoreactive for GABA(B)R1 and GABA(B)R2 in the A1, A5, A6, C1, B2 and B7 cell groups, whereas a smaller proportion of A2, B1, B3, B6 and B8 neurons were GABA(B)R2-immunoreactive than GABA(B)R1-immunoreactive. In general, our results suggest that GABA(B)R1 and GABA(B)R2 co-exist in the great majority of brainstem catecholamine and serotonin neurons. In the neurons that lack GABA(B)R2, the GABA(B)R1 subunit may act alone or with another protein.


Assuntos
Tronco Encefálico/química , Catecolaminas/análise , Subunidades Proteicas/análise , Receptores de GABA-B/análise , Serotonina/análise , Animais , Masculino , Neurônios/química , Ratos , Ratos Wistar , Receptores de GABA , Receptores de GABA-A
18.
J Comp Neurol ; 522(4): 811-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23939531

RESUMO

In primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys. We found that the entire extent of this area is unified by projections from the dorsocaudal and medial subdivisions of premotor cortex (areas 6DC and 6M), from somatosensory areas 3a, 3b, 1/2, and S2, and from posterior parietal area PE. While cingulate areas projected to all subdivisions, they preferentially targeted the medial part of M1. Conversely, the ventral premotor areas were preferentially connected with the lateral part of M1. Smaller but consistent inputs originated in frontal area 6DR, ventral posterior parietal cortex, the retroinsular cortex, and area TPt. Connections with intraparietal, prefrontal, and temporal areas were very sparse, and variable. Our results demonstrate that M1 is unified by a consistent pattern of major connections, but also shows regional variations in terms of minor inputs. These differences likely reflect requirements for control of voluntary movement involving different body parts.


Assuntos
Mapeamento Encefálico , Callithrix/anatomia & histologia , Lobo Frontal/citologia , Córtex Motor/citologia , Vias Neurais/fisiologia , Animais , Estimulação Elétrica , Feminino , Corantes Fluorescentes/metabolismo , Lateralidade Funcional/fisiologia , Processamento de Imagem Assistida por Computador , Masculino , Neurônios/fisiologia
19.
J Comp Neurol ; 522(16): 3683-716, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24888737

RESUMO

Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal-directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys.


Assuntos
Mapeamento Encefálico , Callithrix/anatomia & histologia , Córtex Motor/anatomia & histologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Animais , Dextranos/metabolismo , Feminino , Fluoresceínas/metabolismo , Lateralidade Funcional , Região Hipotalâmica Lateral , Masculino , Rodaminas/metabolismo
20.
J Comp Neurol ; 514(1): 11-29, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19260047

RESUMO

Although the common marmoset has become a model for the study of several neurological conditions that affect the frontal lobe, knowledge of the boundaries of the areas located in the orbital and medial frontal regions has remained incomplete. Here we examined histological sections stained for myelin, Nissl substance, and cytochrome oxidase, allowing identification of likely homologues of most of the architectural fields defined in Old World monkeys. Ventrally, we identified three granular fields at or near the frontal pole (area 10, and the medial and lateral subregions of area 11), and two granular fields along the lateral margin of the orbitofrontal cortex (medial and orbital subdivisions of area 12). More caudal and medially, dysgranular and agranular cortices included four subdivisions of area 13 as well as rostral and caudal subdivisions of area 14 (at the ventromedial convexity). The ventral frontotemporal transition encompassed at least two subdivisions of agranular insular cortex, as well as the likely homologues of the gustatory cortices. Most of the medial surface was encompassed by area 10 (which projected a caudomedial finger-like extension toward the subgenual cortex), together with a relatively large dysgranular area 32 and an agranular area 25 (in subgenual cortex). Finally, the caudal limit of the medial frontal cortex included two fields of agranular cingulate cortex (areas 24a and 24b). These findings enhance our understanding of the architectural organization of the marmoset frontal cortex and highlight a highly conserved basic organization across simian primates, allowing the informed interpretation of experimental neurological studies.


Assuntos
Callithrix/anatomia & histologia , Lobo Frontal/anatomia & histologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/análise , Proteínas da Mielina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA