Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926079

RESUMO

OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.

2.
Brain Behav Immun ; 122: 167-184, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142421

RESUMO

Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.


Assuntos
Envelhecimento , Ansiedade , Dieta Hiperlipídica , Microbioma Gastrointestinal , Memória , Microglia , Prebióticos , Animais , Microglia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Ansiedade/metabolismo , Microbioma Gastrointestinal/fisiologia , Prebióticos/administração & dosagem , Masculino , Memória/fisiologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Inflamação/metabolismo
3.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474504

RESUMO

The gut microbiota produces a variety of bioactive molecules that facilitate host-microbiota interaction. Indole and its metabolites are focused as possible biomarkers for various diseases. However, data on indole metabolism and individual metabolites remain limited. Hence, we investigated the metabolism and distribution of indole, indolin-2-one, isatin, and 3-hydroxyindolin-2-one. First, we orally administered a high dose of indole into C57BL/6J mice and measured the concentrations of indole metabolites in the brain, liver, plasma, large and small intestines, and cecum at multiple time points using HPLC/MS. Absorption in 30 min and full metabolization in 6 h were established. Furthermore, indole, indolin-2-one, and 3-hydroxiindolin-2-one, but not isatin, were found in the brain. Second, we confirmed these findings by using stable isotope-carrying indole. Third, we identified 3-hydroxyindolin-2-one as an indole metabolite in vivo by utilizing a 3-hydroxyindolin-2-one-converting enzyme, IifA. Further, we confirmed the ability of orally administered 3-hydroxyindolin-2-one to cross the blood-brain barrier in a dose-dependent manner. Finally, we detected upregulation of the CYP1A2 and CYP2A5 genes, confirming the importance of these cytochrome isoforms in indole metabolism in vivo. Overall, our results provide a basic characterization of indole metabolism in the host and highlight 3-hydroxyindolin-2-one as a potentially brain-affecting indole metabolite.


Assuntos
Isatina , Microbiota , Camundongos , Animais , Camundongos Endogâmicos C57BL , Indóis/metabolismo
4.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569381

RESUMO

The experimental details reported in preclinical fecal microbiota transplantation (FMT) protocols are highly inconsistent, variable, and/or incomplete. We therefore evaluated FMT from a human donor to antibiotic-induced microbial-depleted mice by exploring the effects of six techniques based on antibiotic (AB) or antibiotic + antimycotic (AB + T) gut decontamination, different administration routes, and different dosing intervals on the gut microbial population, assessed using 16S and 18S sequencing. In addition, we explored the effectiveness of FMT in terms of inflammation, physiological, and behavioral outcomes. Our results showed that intrarectal FMT at low dosing intervals better preserved the donor's gut bacterial community at genus level. Furthermore, we showed a lower abundance of several genera of fungi in animals treated with AB + T. In addition, we observed that AB + T gut decontamination followed by per os FMT, once every 3 days, affected behavioral parameters when compared to other FMT techniques. Accordingly, the same FMT groups that showed an association with some of the behavioral tests were also related to specific gut fungal genera, suggesting a possible mediation. Our findings may be useful for optimizing the practice of FMT and also in terms of donor microbiota preservation. This information may help to improve the reproducibility and reliability of FMT studies.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Fezes/microbiologia , Reprodutibilidade dos Testes , RNA Ribossômico 16S/genética , Transplante de Microbiota Fecal/métodos , Antibacterianos
5.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682774

RESUMO

Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic-gut microbe-host interactions required for diabetes and obesity improvement.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Promoção da Saúde , Humanos , Obesidade/metabolismo , Obesidade/prevenção & controle , Prebióticos
6.
Gut ; 70(12): 2283-2296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33514598

RESUMO

BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.


Assuntos
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Inibição Psicológica , Obesidade/complicações , Adulto , Idoso , Animais , Estudos Transversais , Fígado Gorduroso/microbiologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Transcriptoma
7.
Addict Biol ; 23(2): 544-555, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282813

RESUMO

A major problem in treating obesity is the high rate of relapse to abnormal food-taking habits after maintaining an energy balanced diet. Alterations of eating behavior such as compulsive-like behavior and lack of self-control over food intake play a critical role in relapse. In this study, we used an operant paradigm of food-seeking behavior on two different diet-induced obesity models, a free-choice chocolate-mixture diet and a high-fat diet with face validity for a rapid development of obesity or for unhealthy food regularly consumed in our societies. A reduced operant performance and motivation for the hedonic value of palatable chocolate pellets was revealed in both obesity mouse models. However, only mice exposed to high-fat diet showed an increased compulsive-like behavior in the absence of the reinforcer further characterized by impaired operant learning, enhanced impulsivity and intensified inflexibility. We used principal component analysis to globally identify the specific behaviors responsible for the differences among diet groups. Learning impairment and inflexible behaviors contributed to a first principal component, explaining the largest proportion of the variance in the high-fat diet mice phenotype. Reinforcement, impulsion and compulsion were the main contributors to the second principal component explaining the differences in the chocolate-mixture mice behavioral phenotype. These behaviors were not exclusive of chocolate group because some high-fat individuals showed similar values on this component. These data indicate that extended access to hypercaloric diets differentially modifies operant behavior learning, behavioral flexibility, impulsive-like and compulsive-like behavior, and these effects were dependent on the exposure to each specific diet.


Assuntos
Condicionamento Operante , Comportamento Alimentar , Alimentos , Obesidade , Animais , Comportamento Animal , Chocolate , Comportamento Compulsivo , Dieta Hiperlipídica , Ingestão de Alimentos , Extinção Psicológica , Comportamento Impulsivo , Aprendizagem , Masculino , Camundongos , Análise de Componente Principal , Reforço Psicológico , Autocontrole
8.
Addict Biol ; 23(2): 531-543, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29318700

RESUMO

Obesity represents an important risk factor contributing to the global burden of disease. The current obesogenic environment with easy access to calorie-dense foods is fueling this obesity epidemic. However, how these foods contribute to the progression of feeding behavior changes that lead to overeating is not well understood and needs systematic assessment. Using novel automated methods for the high-throughput screening of behavior, we here examine mice meal pattern upon long-term exposure to a free-choice chocolate-mixture diet and a high-fat diet with face validity for a rapid development of obesity induced by unhealthy food regularly consumed in our societies. We identified rapid diet-specific behavioral changes after exposure to those high-caloric diets. Mice fed with high-fat chow, showed long-lasting meal pattern disturbances, which initiate with a stable loss of circadian feeding rhythmicity. Mice receiving a chocolate-mixture showed qualitatively similar changes, though less marked, consisting in a transient disruption of the feeding behavior and the circadian feeding rhytmicity. Strikingly, compulsive-like eating behavior is triggered immediately after exposure to both high-fat food and chocolate-mixture diet, well before any changes in body weight could be observed. We propose these changes as behavioral biomarkers of prodromal states of obesity that could allow early intervention.


Assuntos
Chocolate , Dieta Hiperlipídica , Ingestão de Energia , Comportamento Alimentar , Obesidade , Animais , Ritmo Circadiano , Comportamento Compulsivo , Alimentos , Hiperfagia , Masculino , Camundongos
9.
Adv Appl Microbiol ; 91: 1-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25911232

RESUMO

The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.


Assuntos
Encéfalo/microbiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Animais , Antibacterianos , Sistema Nervoso Central , Cognição , Mamíferos
10.
Addict Biol ; 20(1): 22-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25288320

RESUMO

Frustration represents a particular aspect of the addictive process that is related to loss of control when the expected reward is not obtained. We aim to study the consequences of frustrated expected reward on gene expression in the mouse brain. For this purpose, we used an operant model of frustration using palatable food as reward combined with microarrays. Transcriptomic profiles of frontal cortex, ventral striatum and hippocampus were analysed in five groups of mice: (1) positive control receiving palatable food and the cue light as conditioned stimulus; (2) frustrated group only receiving the cue light; (3) extinction learning group that did not receive palatable food nor the light; (4) negative control that never received the reinforcer nor the light during the whole experiment; and (5) yoked that received palatable food passively. Gene expression changes produced by frustration were revealed in the frontal cortex and ventral striatum, but not in the hippocampus. Most of the changes, such as the modification of the dopamine-DARPP-32 signalling pathway, were common in both areas and estimated to have neuronal origin. Extinction learning induced transcriptional changes only in the ventral striatum, with most genes showing down-regulation and without alteration in the dopamine-DARPP-32 signalling pathway. Active palatable food-seeking behaviour induced changes in gene expression in ventral striatum mainly affecting cell communication. In conclusion, frustration behaviour-induced changes in frontal cortex and ventral striatum mainly related to dopamine-DARPP-32 signalling that could play an important role in the loss of behavioural control during the addictive processes.


Assuntos
Encéfalo/metabolismo , Condicionamento Operante/fisiologia , Frustração , RNA Mensageiro/metabolismo , Recompensa , Transcriptoma , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Alimentos , Lobo Frontal/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXD/genética , Proteína da Região Y Determinante do Sexo/genética , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Estriado Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA