Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biomacromolecules ; 24(1): 462-470, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563405

RESUMO

Sulfated glycosaminoglycans (GAGs) are fundamental constituents of both the cell surface and extracellular matrix. By playing a key role in cell-cell and cell-matrix interactions, GAGs are involved in many physiological and pathological processes. To design GAG mimetics with similar therapeutic potential as the natural ones, the specific structural features, among them sulfate content, sulfation pattern, and chain length, should be considered. In the present study, we describe a sulfation method based on microwave radiation to obtain highly sulfated derivatives as GAG mimetics. The starting low-molecular-weight (LMW) derivative was prepared from the infernan exopolysaccharide, a highly branched naturally slightly sulfated heteropolysaccharide synthesized by the deep-sea hydrothermal vent bacterium Alteromonas infernus. LMW highly sulfated infernan derivatives obtained by conventional heating sulfation have already been shown to display GAG-mimetic properties. Here, the potential of microwave-assisted sulfation versus that of the conventional method to obtain GAG mimetics was explored. Structural analysis by NMR revealed that highly sulfated derivatives from the two methods shared similar structural features, emphasizing that microwave-assisted sulfation with a 12-fold shorter reaction time is as efficient as the classical one.


Assuntos
Glicosaminoglicanos , Micro-Ondas , Glicosaminoglicanos/química , Sulfatos/química , Espectroscopia de Ressonância Magnética , Matriz Extracelular/metabolismo
2.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570778

RESUMO

The first access to polyfunctionnalized pyrrolo[3,4-c]pyrazole-4,6-(2H,5H)-dione derivatives is reported. The series were generated from diethyl acetylenedicarboxylate and arylhydrazines, which afforded the key intermediates bearing two functional positions. The annellation to generate the maleimide moiety of the bicycle was studied. Moreover, an efficient palladium-catalyzed C-C and C-N bond formation via Suzuki-Miyaura or Buchwald-Hartwig coupling reactions in C-6 position was investigated from 6-chloropyrrolo[3,4-c]pyrazole-4,6-(2H,5H)-diones. This method provides novel access to various 1,6 di-substituted pyrrolo[3,4-c] pyrazole-4,6-(2H,5H)-diones.

3.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861550

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/farmacologia , Ligação Proteica , Piridinas/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
4.
J Enzyme Inhib Med Chem ; 37(1): 1632-1650, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35670091

RESUMO

A library of substituted indolo[2,3-c]quinolone-6-ones was developed as simplified Lamellarin isosters. Synthesis was achieved from indole after a four-step pathway sequence involving iodination, a Suzuki-Miyaura cross-coupling reaction, and a reduction/lactamization sequence. The inhibitory activity of the 22 novel derivatives was assessed on Haspin kinase. Two of them possessed an IC50 of 1 and 2 nM with selectivity towards a panel of 10 other kinases including the parent kinases DYRK1A and CLK1. The most selective compound exerted additionally a very interesting cell effect on the osteosarcoma U-2 OS cell line.


Assuntos
Neoplasias Ósseas , Quinolonas , Humanos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases , Quinolonas/farmacologia , Relação Estrutura-Atividade
5.
J Labelled Comp Radiopharm ; 64(9): 363-372, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089268

RESUMO

We synthesized 5-[18 F]-fluoro-1H-indol-2-yl)(4-methyl-1-piperazinyl)methanone ([18 F]5) via a Suzuki approach starting from a protected pinacol borane precursor followed by acidic hydrolysis of the t-Boc protecting group. The non-optimized radiochemical yield was 5.7 ± 1.35%, radiochemical purity was over 99%, and molar activity was 100.7 ± 34.5 GBq/µmol (n = 3). [18 F]5 was stable in rat plasma for at least 4 h and was evaluated by µPET imaging and biodistribution using a unilateral quinolinic acid rat model of neuroinflammation. The time-activity curve showed that [18 F]5 entered the brain immediately after intravenous injection and then left it progressively with a very low level reached from 30 min after injection. The biodistribution study showed no difference in the accumulation of [18 F]5 between the lesioned and intact side of the brain and between control rats and animals pretreated with a saturating dose of JNJ-7777120 as a specific H4R antagonist. Hence, despite its in vitro nanomolar affinity for H4R, and its ability to cross the blood-brain barrier in rats, [18 F]5 does not appear suitable to image in vivo the receptor by PET.


Assuntos
Receptores Histamínicos H4
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209248

RESUMO

Starting from indomethacin (IND), one of the most prescribed non-steroidal anti-inflammatory drugs (NSAIDs), new nitric oxide-releasing indomethacin derivatives with 1,3,4-oxadiazole-2-thiol scaffold (NO-IND-OXDs, 8a-p) have been developed as a safer and more efficient multitarget therapeutic strategy. The successful synthesis of designed compounds (intermediaries and finals) was proved by complete spectroscopic analyses. In order to study the in silico interaction of NO-IND-OXDs with cyclooxygenase isoenzymes, a molecular docking study, using AutoDock 4.2.6 software, was performed. Moreover, their biological characterization, based on in vitro assays, in terms of thermal denaturation of serum proteins, antioxidant effects and the NO releasing capacity, was also performed. Based on docking results, 8k, 8l and 8m proved to be the best interaction for the COX-2 (cyclooxygense-2) target site, with an improved docking score compared with celecoxib. Referring to the thermal denaturation of serum proteins and antioxidant effects, all the tested compounds were more active than IND and aspirin, used as references. In addition, the compounds 8c, 8h, 8i, 8m, 8n and 8o showed increased capacity to release NO, which means they are safer in terms of gastrointestinal side effects.


Assuntos
Ciclo-Oxigenase 2/química , Indometacina , Simulação de Acoplamento Molecular , Óxido Nítrico/química , Oxidiazóis , Humanos , Indometacina/síntese química , Indometacina/química , Oxidiazóis/síntese química , Oxidiazóis/química
7.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500781

RESUMO

This work describes the synthesis, enzymatic activities on PI3K and mTOR, in silico docking and cellular activities of various uncommon 2,4,7 trisubstituted pyrido[3,2-d]pyrimidines. The series synthesized offers a chemical diversity in C-7 whereas C-2 (3-hydroxyphenyl) and C-4 groups (morpholine) remain unchanged, in order to provide a better understanding of the molecular determinants of PI3K selectivity or dual activity on PI3K and mTOR. Some C-7 substituents were shown to improve the efficiency on kinases compared to the 2,4-di-substituted pyrimidopyrimidine derivatives used as references. Six novel derivatives possess IC50 values on PI3Kα between 3 and 10 nM. The compounds with the best efficiencies on PI3K and mTOR induced micromolar cytotoxicity on cancer cell lines possessing an overactivated PI3K pathway.


Assuntos
Desenho de Fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
8.
J Enzyme Inhib Med Chem ; 35(1): 1840-1853, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33040634

RESUMO

Haspin is a mitotic protein kinase required for proper cell division by modulating Aurora B kinase localisation and activity as well as histone phosphorylation. Here a series of imidazopyridazines based on the CHR-6494 and Structure Activity Relationship was established. An assessment of the inhibitory activity of the lead structures on human Haspin and several other protein kinases is presented. The lead structure was rapidly optimised using a combination of crystal structures and effective docking models, with the best inhibitors exhibiting potent inhibitory activity on Haspin with IC50 between 6 and 100 nM in vitro. The developed inhibitors displayed anti-proliferative properties against various human cancer cell lines in 2D and spheroid cultures and significantly inhibited the migration ability of osteosarcoma U-2 OS cells. Notably, we show that our lead compounds are powerful Haspin inhibitors in human cells, and did not block G2/M cell cycle transition due to improved selectivity against CDK1/CyclinB.


Assuntos
Antineoplásicos/síntese química , Neoplasias Ósseas/tratamento farmacológico , Indazóis/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridazinas/síntese química , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Histonas/química , Humanos , Indazóis/farmacologia , Simulação de Acoplamento Molecular , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Relação Estrutura-Atividade
9.
J Enzyme Inhib Med Chem ; 34(1): 1-7, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30362376

RESUMO

A series of novel derivatives exhibiting high affinity and selectivity towards the COX-2 enzyme in the (aza) indazole series was developed. A short synthetic route involving a bromination/arylation sequence under microwave irradiation and direct C-H activation were established in the indazole and azaindazole series respectively. In vitro assays were conducted and structural modifications were carried out on these scaffolds to furnish compound 16 which exhibited effective COX-2 inhibitory activity, with IC50 values of 0.409 µM and an excellent selectivity versus COX-1. Radiolabeling of this most potent derivative [18F]16 was achieved after boron ester release and the tracer was evaluated in vivo in a rat model of neuroinflammation. All chemistry, radiochemistry and biological experimental data are discussed.


Assuntos
Compostos Aza/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Indazóis/farmacologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia , Animais , Compostos Aza/síntese química , Compostos Aza/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Radioisótopos de Flúor , Indazóis/síntese química , Indazóis/química , Estrutura Molecular , Traçadores Radioativos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Relação Estrutura-Atividade
10.
Artigo em Inglês | MEDLINE | ID: mdl-29632009

RESUMO

Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/metabolismo , Zinco/metabolismo , Animais , Modelos Animais de Doenças , Medições Luminescentes , Camundongos , Testes de Sensibilidade Microbiana , Pirazolonas/uso terapêutico
11.
Molecules ; 23(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360579

RESUMO

The design of some novel di-(het)arylated-3H-pyrido[1',2':1,5]pyrazolo[4,3-d]pyrimidine derivatives is reported. The series was developed from 1-aminopyridinium iodide, which afforded the key intermediate bearing two thiomethyl and amide functions, each of them useful for palladium catalyzed cross coupling reactions by alkyl sulfur release and C-O activation, respectively. The two regioselective and successive cross-coupling reactions were first carried out in C-4 by in situ C-O activation and next in C-2 by a methylsulfur release. Process optimization furnished conditions leading to products in high yields. The scope and limitations of the methodologies were evaluated and the final compounds characterized.


Assuntos
Paládio/química , Pirimidinas/síntese química , Amidas/química , Carbono/química , Catálise , Estrutura Molecular , Acoplamento Oxidativo , Oxigênio/química , Pirimidinas/química
12.
J Org Chem ; 82(24): 13700-13707, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29131628

RESUMO

This work reports the design of [1,3,4]thiadiazolo[3',2':1,2]imidazo[4,5-c]quinolines using a Pictet-Spengler reaction. The scope of the reaction was achieved from 6-(2-aminophenyl)imidazo[2,1-b][1,3,4]thiadiazole derivatives and available aldehydes. A wide range of aldehydes were employed to examine the scope of the cyclization. In parallel, a mechanism investigation was realized and showed a hydride transfer which led to a dismutation of the intermediate species. To complete this methodological study, a "sequential" oxidation/SNAr procedure was performed to achieve C-2 nucleophilic substitution using several amine types.

13.
Inorg Chem ; 54(12): 5991-6003, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26030671

RESUMO

To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent GdDTPA (t1/2 = 5298 h for GdHYD vs 202 h for GdDTPA) is related to the rigidity of the HYD ligand due to the pyridine and methylated hydrazine functions of the backbone. A combined analysis of variable-temperature (17)O NMR and NMRD data on GdHYD yielded the microscopic parameters influencing relaxation properties. The high relaxivity (r1 = 7.7 mM(-1) s(-1) at 20 MHz, 25 °C) results from the bishydrated character of the complex combined with an optimized water exchange rate (kex(298) = 7.8 × 10(6) s(-1)). The two inner-sphere water molecules are not replaced through interaction with biological cations such as carbonate, citrate, and phosphate as monitored by (1)H relaxivity and luminescence lifetime measurements.


Assuntos
Gadolínio/química , Hidrazinas/química , Piridinas/química , Quelantes/química , Técnicas de Química Sintética , Cobre/química , Gadolínio DTPA , Meia-Vida , Cinética , Elementos da Série dos Lantanídeos/química , Ligantes , Espectroscopia de Ressonância Magnética , Potenciometria , Espectrofotometria Ultravioleta , Termodinâmica
14.
Anal Bioanal Chem ; 406(15): 3743-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24817345

RESUMO

Human kinases are one of the most promising targets for cancer therapy. Methods able to measure the effects of drugs on these cell agents remain crucial for biologists and medicinal chemists. The current work therefore sought to develop an in-capillary enzymatic assay based on capillary electrophoresis (CE) to evaluate the inhibition of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR). These kinases belong to the same signaling pathway PI3K/Akt/mTOR. For this proposal, the capillary was used as a nanoreactor in which a few nanoliters of the kinase, its substrate, adenosine triphosphate (ATP), and the potent inhibitor were separately injected. A transverse diffusion of laminar flow profiles (TDLFP) approach was employed to mix the reactants. Adenosine diphosphate (ADP ) was detected online at 254 nm. The CE assay was first developed on the α isoform of PI3K. It was compared to five commercial kits frequently used to assess kinase inhibition, based on time-resolved fluorescence resonance energy transfer (TR-FRET) and bioluminescence. Each assay was evaluated in terms of sensitivity (S/B), reproducibility (Z'), and variability (r (2)). This CE method was easily extended to assay the inhibition of the ß, γ, and δ isoforms of PI3K, and of the other kinases of the pathway, Akt1 and mTOR, since it is based on in-capillary mixing by TDLFP and on ADP quantification by simple UV absorption. This work shows for the first time the evaluation of inhibitors of the kinases of the PI3K/Akt/mTOR pathway using a common in-capillary CE assay. Several inhibitors with a wide range of affinity toward these enzymes were tested.


Assuntos
Eletroforese Capilar/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Androstadienos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Luminescência , Inibidores de Proteínas Quinases/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Wortmanina
15.
Molecules ; 19(12): 19935-79, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25460315

RESUMO

This review article illustrates the growing use of azaindole derivatives as kinase inhibitors and their contribution to drug discovery and innovation. The different protein kinases which have served as targets and the known molecules which have emerged from medicinal chemistry and Fragment-Based Drug Discovery (FBDD) programs are presented. The various synthetic routes used to access these compounds and the chemical pathways leading to their synthesis are also discussed. An analysis of their mode of binding based on X-ray crystallography data gives structural insights for the design of more potent and selective inhibitors.


Assuntos
Compostos Aza/química , Desenho de Fármacos , Indóis/química , Inibidores de Proteínas Quinases/química , Animais , Humanos
16.
Molecules ; 19(9): 13824-47, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25255761

RESUMO

New thiazolidine-4-one derivatives based on the 4-aminophenazone (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) scaffold have been synthesized as potential anti-inflammatory drugs. The pyrazoline derivatives are known especially for their antipyretic, analgesic and anti-inflammatory effects, but recently there were synthesized new compounds with important antioxidant, antiproliferative, anticancer and antidiabetic activities. The beneficial effects of these compounds are explained by nonselective inhibition of cyclooxygenase izoenzymes, but also by their potential scavenging ability for reactive oxygen and nitrogen species. The structure of the new compounds was proved using spectroscopic methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the ferric reducing antioxidant power, phosphomolydenum reducing antioxidant power, DPPH and ABTS radical scavenging assays. The chemical modulation of 4-aminophenazone (6) through linkage to thiazolidine-propanoic acid derivatives 5a-l led to improved antioxidant potential, all derivatives 7a-l being more active than phenazone. The most active compounds are the derivatives 7e, and 7k, which showed the higher antioxidant effect depending on the antioxidant assay considered.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Pirazóis/química , Tiazolidinas/química , Tiazolidinas/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética , Tiazolidinas/síntese química
17.
Molecules ; 19(9): 15005-25, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237755

RESUMO

New thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid (ibuprofen) have been synthesized as potential anti-inflammatory drugs. The structure of the new compounds was proved using spectral methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the total antioxidant activity, the DPPH and ABTS radical scavenging assays. Reactive oxygen species (ROS) and free radicals are considered to be involved in many pathological events like diabetes mellitus, neurodegenerative diseases, cancer, infections and more recently, in inflammation. It is known that overproduction of free radicals may initiate and amplify the inflammatory process via upregulation of genes involved in the production of proinflammatory cytokines and adhesion molecules. The chemical modulation of acyl hydrazones of ibuprofen 3a-l through cyclization to the corresponding thiazolidine-4-ones 4a-n led to increased antioxidant potential, as all thiazolidine-4-ones were more active than their parent acyl hydrazones and also ibuprofen. The most active compounds are the thiazolidine-4-ones 4e, m, which showed the highest DPPH radical scavenging ability, their activity being comparable with vitamin E.


Assuntos
Propionatos/síntese química , Propionatos/farmacologia , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Propionatos/química , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Dalton Trans ; 53(21): 9028-9041, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38726882

RESUMO

We investigated the coordination properties of original macrocyclic Ln3+ complexes comprising an imidazothiadiazole heterocycle. The thermodynamic stability of the Gd3+ complex was determined by a combination of potentiometric and photophysical measurements. The kinetic inertness was assessed in highly acidic media. The solution structure of the Ln3+ complex was unambiguously determined by a set of photophysical measurements and 1H, 13C, 89Y NMR data in combination with DFT calculations, which proved coordination of the heterocycle to Ln3+. The ability of the imidazothiadiazole moiety to sensitize Tb3+ luminescence was investigated. Finally, the relaxation properties were investigated by recording 1H nuclear magnetic relaxation dispersion (NMRD) profiles and 17O measurements. The water exchange rate is similar to that of GdDOTA as the less negative charge of the ligand is compensated for by the presence of a bulky heterocycle. Relaxivity is constant over a large range of pH values, demonstrating the favorable properties of the complex for imaging purposes.

19.
Chemistry ; 18(5): 1419-31, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22213187

RESUMO

A series of novel triazole derivative pyridine-based polyamino-polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd(3+) and near-infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln(3+) complexes, as assessed by pH potentiometric measurements, are in the range log K(LnL)=17-19, with a high selectivity for lanthanides over Ca(2+), Cu(2+), and Zn(2+). The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd(3+) chelates. The water exchange of the Gd(3+) complexes (k(ex)(298)=7.7-9.3×10(6) s(-1)) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV(≠)=7.2-8.8 cm(3) mol(-1)). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl-triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet-state energies associated with good quantum yields for both Nd(3+) and Yb(3+) complexes. Cellular and in vivo toxicity studies in mice evidenced the non-toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd(3+) and the luminescent lanthanide complexes, respectively.


Assuntos
Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Piridinas/química , Amidinotransferases , Animais , Células HeLa , Humanos , Ligantes , Fígado/enzimologia , Luminescência , Imageamento por Ressonância Magnética/métodos , Camundongos , Modelos Químicos , Estrutura Molecular , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Temperatura , Triazóis/química
20.
Inorg Chem ; 51(4): 2522-32, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22233349

RESUMO

In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 µM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.


Assuntos
Meios de Contraste/química , Isoquinolinas/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Imageamento por Ressonância Magnética , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Isoquinolinas/síntese química , Elementos da Série dos Lantanídeos/síntese química , Luminescência , Substâncias Luminescentes/síntese química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA