Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 71(19): 6107-6115, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32668003

RESUMO

Soil compaction represents a major impediment to plant growth, yet wild plants are often observed thriving in soil of high bulk density in non-agricultural settings. We analysed the root growth of three non-cultivated species often found growing in compacted soils in the natural environment. Plants of ribwort plantain (Plantago lanceolata), dandelion (Taraxacum officinale), and spear thistle (Cirsium vulgare) were grown for 28 d in a sandy loam soil compacted to 1.8 g cm-3 with a penetration resistance of 1.55 MPa. X-Ray computed tomography was used to observe root architecture in situ and to visualise changes in rhizosphere porosity (at a resolution of 35 µm) at 14 d and 28 d after sowing. Porosity of the soil was analysed within four incremental zones up to 420 µm from the root surface. In all species, the porosity of the rhizosphere was greatest closest to the root and decreased with distance from the root surface. There were significant differences in rhizosphere porosity between the three species, with Cirsium plants exhibiting the greatest structural genesis across all rhizosphere zones. This creation of pore space indicates that plants can self-remediate compacted soil via localised structural reorganisation in the rhizosphere, which has potential functional implications for both plant and soil.


Assuntos
Rizosfera , Solo , Raízes de Plantas , Porosidade , Tomografia Computadorizada por Raios X
3.
PLoS One ; 12(7): e0181872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28753645

RESUMO

Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure.


Assuntos
Produtos Agrícolas/anatomia & histologia , Solo/química , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional , Raízes de Plantas/anatomia & histologia , Porosidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA