Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 620(7975): 807-812, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612395

RESUMO

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Objetivos , Clima Tropical , Nações Unidas , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Mamíferos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Agricultura Florestal/tendências
2.
Proc Natl Acad Sci U S A ; 120(3): e2214462120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623189

RESUMO

Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.


Assuntos
Carbono , Ecossistema , Clima Tropical , Biomassa , Atmosfera , Solo
5.
Glob Chang Biol ; 30(3): e17209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469989

RESUMO

Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30-35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15-27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5-6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.


A restauração ativa por meio de tratamentos silviculturais (plantio de enriquecimento, corte de trepadeiras e desbaste) é considerada uma intervenção importante em florestas com exploração de madeira. No entanto, sua capacidade de melhorar a regeneração, essencial para a recuperação de longo prazo das florestas exploradas, permanece pouco compreendida, especialmente no que diz respeito à produção e sobrevivência de mudas em gerações subsequentes. Para compreender os impactos de longo prazo da exploração madeireira e da restauração, acompanhamos a diversidade, sobrevivência e características de plântulas que germinaram imediatamente após uma frutificação em massa no norte de Bornéu, em florestas com e sem exploração de madeira, 30-35 anos após o fim da extração. Monitoramos 5119 mudas desde a germinação por aproximadamente 1,5 anos em uma paisagem mista de florestas não exploradas (UL), florestas exploradas em regeneração natural (NR) e florestas exploradas restauradas ativamente por meio de tratamentos silviculturais de reabilitação (AR), 15-27 anos após a restauração. Medimos 14 traços funcionais de folhas, raízes e alocação de biomassa em 399 mudas de 15 espécies. Logo após a frutificação, as florestas UL e AR apresentaram densidades de mudas mais altas do que as florestas NR, mas a sobrevivência foi mais baixa nas florestas AR nos primeiros seis meses. A composição da comunidade diferiu entre os tipos de floresta; as florestas AR e NR teviram menor riqueza de espécies e menor equidade do que as florestas UL 5-6 meses após a frutificação, mas não diferiram entre si. As diferenças na composição da comunidade alteraram os valores de média ponderada pela comunidade das características entre os tipos de floresta com maior alocação de biomassa radicular nas florestas NR em relação às florestas UL. As características influenciaram a mortalidade aproximadamente 3 meses após a frutificação, com traços mais aquisitivos maior investimento em biomassa relativa acima do solo nas florestas AR em relação às florestas UL. Nossas descobertas de redução na sobrevivência e diversidade de plântulas sugerem que há longos retardos no recrutamento após o fim da exploração de madeira, particularmente para alguns táxons. A restauração ativa de florestas exploradas recupera a produção inicial de plântulas, mas a mortalidade elevada nas florestas AR diminui a eficácia da restauração ativa no melhorio do recrutamento e da diversidade das comunidades de mudas. Isso sugere que as práticas atuais de restauração ativa podem não superar as barreiras à regeneração em florestas exploradas, o que pode levar a mudanças de longo prazo nas comunidades florestais no futuro.


Assuntos
Agricultura Florestal , Árvores , Florestas , Plântula , Germinação , Clima Tropical
6.
Proc Biol Sci ; 289(1976): 20220739, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703055

RESUMO

The role of conspecific density dependence (CDD) in the maintenance of species richness is a central focus of tropical forest ecology. However, tests of CDD often ignore the integrated effects of CDD over multiple life stages and their long-term impacts on population demography. We combined a 10-year time series of seed production, seedling recruitment and sapling and tree demography of three dominant Southeast Asian tree species that adopt a mast-fruiting phenology. We used these data to construct individual-based models that examine the effects of CDD on population growth rates (λ) across life-history stages. Recruitment was driven by positive CDD for all species, supporting the predator satiation hypothesis, while negative CDD affected seedling and sapling growth of two species, significantly reducing λ. This negative CDD on juvenile growth overshadowed the positive CDD of recruitment, suggesting the cumulative effects of CDD during seedling and sapling development has greater importance than the positive CDD during infrequent masting events. Overall, CDD varied among positive, neutral and negative effects across life-history stages for all species, suggesting that assessments of CDD on transitions between just two stages (e.g. seeds seedlings or juveniles mature trees) probably misrepresent the importance of CDD on population growth and stability.


Assuntos
Florestas , Árvores , Demografia , Plântula , Sementes , Clima Tropical
7.
New Phytol ; 235(6): 2183-2198, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633119

RESUMO

Fine-scale topographic-edaphic gradients are common in tropical forests and drive species spatial turnover and marked changes in forest structure and function. We evaluate how hydraulic traits of tropical tree species relate to vertical and horizontal spatial niche specialization along such a gradient. Along a topographic-edaphic gradient with uniform climate in Borneo, we measured six key hydraulic traits in 156 individuals of differing heights in 13 species of Dipterocarpaceae. We investigated how hydraulic traits relate to habitat, tree height and their interaction on this gradient. Embolism resistance increased in trees on sandy soils but did not vary with tree height. By contrast, water transport capacity increased on sandier soils and with increasing tree height. Habitat and height only interact for hydraulic efficiency, with slope for height changing from positive to negative from the clay-rich to the sandier soil. Habitat type influenced trait-trait relationships for all traits except wood density. Our data reveal that variation in the hydraulic traits of dipterocarps is driven by a combination of topographic-edaphic conditions, tree height and taxonomic identity. Our work indicates that hydraulic traits play a significant role in shaping forest structure across topographic-edaphic and vertical gradients and may contribute to niche specialization among dipterocarp species.


Assuntos
Florestas , Árvores , Bornéu , Ecossistema , Solo , Clima Tropical
8.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
9.
J Anim Ecol ; 91(3): 604-617, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954816

RESUMO

Conservation outcomes could be greatly enhanced if strategies addressing anthropogenic land-use change considered the impacts of these changes on entire communities as well as on individual species. Examining how species interactions change across gradients of habitat disturbance allows us to predict the cascading consequences of species extinctions and the response of ecological networks to environmental change. We conducted the first detailed study of changes in a commensalist network of mammals and dung beetles across an environmental disturbance gradient, from primary tropical forest to plantations, which varied in above-ground carbon density (ACD) and mammal communities. Mammal diversity changed only slightly across the gradient, remaining high even in oil palm plantations and fragmented forest. Dung beetle species richness, however, declined in response to lower ACD and was particularly low in plantations and the most disturbed forest sites. Three of the five network metrics (nestedness, network specialization and functionality) were significantly affected by changes in dung beetle species richness and ACD, but mammal diversity was not an important predictor of network structure. Overall, the interaction networks remained structurally and functionally similar across the gradient, only becoming simplified (i.e. with fewer dung beetle species and fewer interactions) in the most disturbed sites. We suggest that the high diversity of mammals, even in disturbed forests, combined with the generalist feeding patterns of dung beetles, confer resilience to the commensalist dung beetle-mammal networks. This study highlights the importance of protecting logged and fragmented forests to maintain interaction networks and potentially prevent extinction cascades in human-modified systems.


Assuntos
Besouros , Animais , Biodiversidade , Besouros/fisiologia , Ecossistema , Florestas , Mamíferos
10.
Environ Manage ; 69(1): 140-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586487

RESUMO

Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS. We follow five good-practice criteria: justified, evidence-informed, actionable, quantifiable, and flexible. We used expert knowledge methods to compile 17 lists of ecological, social, and economic impacts of lodgepole pines (Pinus contorta) and American mink (Neovison vison) in Chile and Argentina, the privet (Ligustrum lucidum) in Argentina, the yellow-jacket wasp (Vespula germanica) in Chile, and grasses (Urochloa brizantha and Urochloa decumbens) in Brazil. INNS plants caused a greater number of impacts than INNS animals, although more socio-economic impacts were listed for INNS animals than for plants. These impacts were ranked according to their magnitude and level of confidence on the information used for the ranking to prioritise impacts and assign them one of four high-level actions-do nothing, monitor, research, and immediate active management. We showed that it is possible to formulate management priorities, targets, and high-level actions for a variety of INNS and with variable levels of available information. This is vital in a world where the problems caused by INNS continue to increase, and there is a parallel growth in the implementation of management plans to deal with them.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Animais , Argentina , Brasil , Chile , Plantas
11.
Proc Biol Sci ; 288(1948): 20203045, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849320

RESUMO

The decline in species richness at higher latitudes is among the most fundamental patterns in ecology. Whether changes in species composition across space (beta-diversity) contribute to this gradient of overall species richness (gamma-diversity) remains hotly debated. Previous studies that failed to resolve the issue suffered from a well-known tendency for small samples in areas with high gamma-diversity to have inflated measures of beta-diversity. Here, we provide a novel analytical test, using beta-diversity metrics that correct the gamma-diversity and sampling biases, to compare beta-diversity and species packing across a latitudinal gradient in tree species richness of 21 large forest plots along a large environmental gradient in East Asia. We demonstrate that after accounting for topography and correcting the gamma-diversity bias, tropical forests still have higher beta-diversity than temperate analogues. This suggests that beta-diversity contributes to the latitudinal species richness gradient as a component of gamma-diversity. Moreover, both niche specialization and niche marginality (a measure of niche spacing along an environmental gradient) also increase towards the equator, after controlling for the effect of topographical heterogeneity. This supports the joint importance of tighter species packing and larger niche space in tropical forests while also demonstrating the importance of local processes in controlling beta-diversity.


Assuntos
Biodiversidade , Árvores , Ecologia , Ásia Oriental
12.
New Phytol ; 230(5): 2061-2071, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33506513

RESUMO

Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees. Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density-dependent effects on seedling growth and survival. Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi. Our findings reveal a critical role of common fungal networks in mitigating negative density-dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.


Assuntos
Micorrizas , Plântula , Florestas , Raízes de Plantas , Solo , Microbiologia do Solo , Árvores
13.
New Phytol ; 228(6): 1796-1810, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32712991

RESUMO

Leaf venation networks evolved along several functional axes, including resource transport, damage resistance, mechanical strength, and construction cost. Because functions may depend on architectural features at different scales, network architecture may vary across spatial scales to satisfy functional tradeoffs. We develop a framework for quantifying network architecture with multiscale statistics describing elongation ratios, circularity ratios, vein density, and minimum spanning tree ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in samples of up to 2 cm2 , pairing multiscale statistics with traits representing axes of resource transport, damage resistance, mechanical strength, and cost. We show that these multiscale statistics clearly differentiate species' architecture and delineate a phenotype space that shifts at larger scales; functional linkages vary with scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio linked to mechanical strength (measured by force to punch) and elongation ratio and circularity ratio linked to damage resistance (measured by tannins); and phylogenetic conservatism of network architecture is low but scale-dependent. This work provides tools to quantify the function and evolution of venation networks. Future studies including primary and secondary veins may uncover additional insights.


Assuntos
Folhas de Planta , Fenótipo , Filogenia
14.
Glob Chang Biol ; 26(2): 989-1002, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845482

RESUMO

Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging-guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape-level disturbance gradient spanning old-growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old-growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old-growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.


Assuntos
Ecossistema , Árvores , Bornéu , Florestas , Análise Espectral , Clima Tropical
15.
Conserv Biol ; 34(4): 934-942, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31840279

RESUMO

Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.


Incorporación de la Conectividad a la Planeación de la Conservación para la Representación Óptima de Especies Múltiples y Servicios Ambientales Resumen Las tendencias de planeación de la conservación tienden a enfocarse en la protección de la distribución geográfica de las especies o en la conectividad de paisajes, pero rara vez se enfocan en ambas - particularmente para el caso de los ensamblajes taxonómicos y las metas múltiples de planeación. Por lo tanto, hay carencias en la información sobre las compensaciones potenciales entre mantener la conectividad de los paisajes y alcanzar otros objetivos de conservación. Desarrollamos una estrategia de optimización para priorizar la protección máxima de la distribución de las especies, los tipos de ecosistemas y los stocks de carbono de los bosques, a la vez que incluimos la conectividad del hábitat para las especies que modifican su distribución y los corredores de dispersión para conectar el área protegida. Aplicamos nuestra estrategia en Sabah, Malasia, en donde el gobierno estatal ordenó un incremento de ∼305, 000 ha en la cobertura de áreas protegidas sin especificar la ubicación de las nuevas áreas protegidas. En comparación con una estrategia de planeación de la conservación que no incorporó las dos características de la conectividad, nuestra estrategia incrementó la protección de los corredores de dispersión y la conectividad altitudinal en un 13% y 21% respectivamente. La cobertura de la distribución de las especies de plantas y vertebrados y de los tipos de bosque fue la misma con o sin la inclusión de la conectividad. Nuestra estrategia protegió 2% menos del carbono forestal y 3% menos de la distribución de mariposas que cuando no se incluyeron las características de conectividad en la estrategia. Por lo tanto, incluir a la conectividad en la planeación de la conservación puede generar grandes incrementos en la protección de la conectividad del paisaje con una pérdida mínima de representación para los demás objetivos de conservación.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Florestas , Malásia , Vertebrados
16.
Ecol Lett ; 22(10): 1608-1619, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347263

RESUMO

Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy ß-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide ß-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of ß-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.


Assuntos
Biodiversidade , Ecossistema , Floresta Úmida , Análise Espectral , Bornéu , Tecnologia de Sensoriamento Remoto , Clima Tropical
17.
Ecol Lett ; 22(2): 245-255, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548766

RESUMO

Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.


Assuntos
Biodiversidade , Árvores , Clima
18.
New Phytol ; 221(4): 1853-1865, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30238458

RESUMO

Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.


Assuntos
Florestas , Solo/química , Árvores/fisiologia , Biodiversidade , Isótopos de Carbono/análise , Ecossistema , Malásia , Isótopos de Nitrogênio/análise , Folhas de Planta/fisiologia , Clima Tropical
19.
Ecol Lett ; 21(5): 713-723, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29536604

RESUMO

Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.


Assuntos
Micorrizas , Solo , Árvores , Florestas , Fósforo , Raízes de Plantas , Solo/química
20.
Ecol Lett ; 21(7): 989-1000, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659115

RESUMO

Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo - at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes - we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation - which control soil chemistry and hydrology - profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.


Assuntos
Florestas , Clima Tropical , Bornéu , Tecnologia de Sensoriamento Remoto , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA