Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834718

RESUMO

Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe2O3) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated É£-Fe2O3 NPs (14, 28, 42, 56 µg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 µg/mL (low-dose), while exposure to a concentration of 56 µg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Dextranos , Medicina de Precisão , Linhagem Celular , Nanopartículas Magnéticas de Óxido de Ferro , Hormônios Pancreáticos , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Neoplasias Pancreáticas
3.
Molecules ; 23(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134599

RESUMO

Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl3 to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-ßH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-ßH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells.


Assuntos
Meios de Contraste , Compostos Heterocíclicos , Células Secretoras de Insulina/metabolismo , Imageamento por Ressonância Magnética , Imagem Molecular , Compostos Organometálicos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Biomarcadores , Células CHO , Meios de Contraste/química , Cricetulus , Expressão Gênica , Compostos Heterocíclicos/química , Xenoenxertos , Humanos , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Imagem Molecular/métodos , Compostos Organometálicos/química , ATPase Trocadora de Sódio-Potássio/genética
5.
J Anat ; 225(4): 377-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25109482

RESUMO

Agamid lizards use tongue prehension for capturing all types of prey. The purpose of this study was to investigate the functional relationship between tongue structure, both surface and musculature, and function during prey capture in Pogona vitticeps. The lack of a detailed description of the distribution of fibre-types in the tongue muscles in some iguanian lizards has hindered the understanding of the functional morphology of the lizard tongue. Three methodological approaches were used to fill this gap. First, morphological analyses were performed (i) on the tongue surface through scanning electron microscopy, and (ii) on the lingual muscle by histological coloration and histochemistry to identify fibre-typing. Secondly, kinematics of prey capture was quantified by using high-speed video recordings to determine the movement capabilities of the tongue. Finally, electromyography (EMG) was used to identify the motor pattern tongue muscles during prey capture. Morphological and functional data were combined to discuss the functional morphology of the tongue in agamid lizards, in relation to their diet. During tongue protraction, M. genioglossus contracts 420 ± 96 ms before tongue-prey contact. Subsequently, Mm. verticalis and hyoglossus contract throughout tongue protraction and retraction. Significant differences are found between the timing of activity of the protractor muscles between omnivorous agamids (Pogona sp., this study) and insectivorous species (Agama sp.), despite similar tongue and jaw kinematics. The data confirm that specialisation toward a diet which includes more vegetal materials is associated with significant changes in tongue morphology and function. Histoenzymology demonstrates that protractor and retractor muscles differ in fibre composition. The proportion of fast glycolytic fibres is significantly higher in the M. hyoglossus (retractor muscle) than in the M. genioglossus (protractor muscle), and this difference is proposed to be associated with differences in the velocity of tongue protrusion and retraction (5 ± 5 and 40 ± 13 cm s(-1) , respectively), similar to Chamaeleonidae. This study provides a way to compare fibre-types and composition in all iguanian and scleroglossan lizards that use tongue prehension to catch prey.


Assuntos
Comportamento Alimentar/fisiologia , Lagartos/anatomia & histologia , Fibras Musculares Esqueléticas/citologia , Comportamento Predatório/fisiologia , Língua/anatomia & histologia , Animais , Eletromiografia , Lagartos/fisiologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Varredura , Músculo Esquelético/anatomia & histologia , Língua/fisiologia , Língua/ultraestrutura , Gravação em Vídeo
6.
Arterioscler Thromb Vasc Biol ; 32(6): e36-48, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22516067

RESUMO

OBJECTIVE: Acute ischemic events are often caused by the disruption of lipid-rich plaques, which are frequently not angiographically visible. Vascular cell adhesion molecule-1 and apoptotic cell-targeted peptides studied during our previous work were conjugated to ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-R832 for vascular cell adhesion molecule-1 targeting; USPIO-R826 for apoptosis targeting) and assessed by magnetic resonance imaging. METHODS AND RESULTS: Apolipoprotein E knockout mice were injected with 0.1 mmol Fe/kg body weight and were imaged on a 4.7-T Bruker magnetic resonance imaging until 24 hours after contrast agent administration. Aortic samples were then harvested and examined by histochemistry, and the magnetic resonance images and histological micrographs were analyzed with ImageJ software. The plaques enhanced by USPIO-R832 contained macrophages concentrated in the cap and a large necrotic core, whereas USPIO-R826 produced a negative enhancement of plaques rich in macrophages and neutral fats concentrated inside the plaque. Both USPIO derivatives colocalized with their target on histological sections and were able to detect plaques with a vulnerable morphology, but each one is detecting a specific environment. CONCLUSIONS: Our vascular cell adhesion molecule-1 and apoptotic cell targeted USPIO derivatives seem to be highly promising tools for atherosclerosis imaging contributing to the detection of vulnerable plaques. They are able to attain their target in low doses and as fast as 30 minutes after administration.


Assuntos
Doenças da Aorta/diagnóstico , Apoptose , Aterosclerose/diagnóstico , Meios de Contraste , Dextranos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Peptídeos , Placa Aterosclerótica/diagnóstico , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Dextranos/administração & dosagem , Dextranos/farmacocinética , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Injeções Intravenosas , Células Jurkat , Macrófagos/metabolismo , Macrófagos/patologia , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Camundongos Knockout , Necrose , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Valor Preditivo dos Testes , Ligação Proteica , Distribuição Tecidual
7.
J Alzheimers Dis Rep ; 7(1): 1395-1426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38225969

RESUMO

Background: Alzheimer's disease (AD) is a neurodegenerative disorder lacking any curative treatment up to now. Indeed, actual medication given to the patients alleviates only symptoms. The cytosolic phospholipase A2 (cPLA2-IVA) appears as a pivotal player situated at the center of pathological pathways leading to AD and its inhibition could be a promising therapeutic approach. Objective: A cPLA2-IVA inhibiting peptide was identified in the present work, aiming to develop an original therapeutic strategy. Methods: We targeted the cPLA2-IVA using the phage display technology. The hit peptide PLP25 was first validated in vitro (arachidonic acid dosage [AA], cPLA2-IVA cellular translocation) before being tested in vivo. We evaluated spatial memory using the Barnes maze, amyloid deposits by MRI and immunohistochemistry (IHC), and other important biomarkers such as the cPLA2-IVA itself, the NMDA receptor, AßPP and tau by IHC after i.v. injection in APP/PS1 mice. Results: Showing a high affinity for the C2 domain of this enzyme, the peptide PLP25 exhibited an inhibitory effect on cPLA2-IVA activity by blocking its binding to its substrate, resulting in a decreased release of AA. Coupled to a vector peptide (LRPep2) in order to optimize brain access, we showed an improvement of cognitive abilities of APP/PS1 mice, which also exhibited a decreased number of amyloid plaques, a restored expression of cPLA2-IVA, and a favorable effect on NMDA receptor expression and tau protein phosphorylation. Conclusions: cPLA2-IVA inhibition through PLP25 peptide could be a promising therapeutic strategy for AD.

8.
Inorg Chem ; 51(11): 6405-11, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22583122

RESUMO

Gd(III)-containing metallostar contrast agents are gaining increased attention, because their architecture allows for a slower tumbling rate, which, in turn, results in larger relaxivities. So far, these metallostars find possible applications as blood pool contrast agents. In this work, the first example of a tissue-selective metallostar contrast agent is described. This RGD-peptide decorated Ru(II)(Gd(III))(3)metallostar is synthesized as an α(v)ß(3)-integrin specific contrast agent, with possible applications in the detection of atherosclerotic plaques and tumor angiogenesis. The contrast agent showed a relaxivity of 9.65 s(-1) mM(-1), which represents an increase of 170%, compared to a low-molecular-weight analogue, because of a decreased tumbling rate (τ(R) = 470 ps). The presence of the MLCT band (absorption 375-500 nm, emission 525-850 nm) of the central Ru(II)(Ph-Phen)(3)-based complex grants the metallostar attractive luminescent properties. The (3)MLCT emission is characterized by a quantum yield of 4.69% and a lifetime of 804 ns, which makes it an interesting candidate for time-gated luminescence imaging. The potential application as a selective MRI contrast agent for α(v)ß(3)-integrin expressing tissues is shown by an in vitro relaxometric analysis, as well as an in vitroT(1)-weighted MR image.


Assuntos
Meios de Contraste/química , Gadolínio/química , Integrina alfaVbeta3/análise , Imageamento por Ressonância Magnética , Oligopeptídeos/química , Rutênio/química , Humanos , Células Jurkat , Substâncias Luminescentes/química , Modelos Moleculares
9.
J Drug Target ; 30(9): 948-960, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35723066

RESUMO

Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates ß-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for ß-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Pró-Proteína Convertase 9 , Colesterol , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Hemoglobinas Glicadas/análise , Homeostase , Humanos , Insulina , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertases/genética
10.
Bioorg Med Chem Lett ; 20(6): 1861-5, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20172716

RESUMO

Ultrasmall particles of iron oxide (USPIOs) coated with 3,3'-bis(phosphonate)propionic acid were covalently coupled to a home-made Arg-Gly-Asp (RGD) peptidomimetic molecule via a short oligoethylene-glycol (OEG) spacer. The conjugation rate was measured by X-ray photoelectron spectroscopy (XPS). The particle size and magnetic characteristics were kept. Our novel conjugate targeted efficiently Jurkat cells (increase of 229% vs the control).


Assuntos
Compostos Férricos/química , Mimetismo Molecular , Oligopeptídeos/química , Tamanho da Partícula , Análise Espectral/métodos , Raios X
11.
Vision Res ; 171: 17-30, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32360540

RESUMO

Sand deserts are common biotopes on the earth's surface. Some specialized vertebrate species have colonized these ecological habitats by living buried in the sand. Among these so called psammophilic species are the Scincidae sand dune living species Scincus scincus and Eumeces schneideri. These two skinks share a relatively similar behavioral ecology by living buried in sand, almost all the time for S. scincus and at least for some part of the day for E. schneideri. The visual system of these two lizards was investigated by histological, immunohistochemical, Magnetic Resonance Imaging (MRI) and morphometric techniques. Both skink species exhibit a retina lacking fovea, composed predominantly of cones presenting two types of oil droplets (pale blue-green and colorless). Both species possess a subset of rod like-photoreceptors (about 1 rod for 30 cones) evidenced by anti-rhodopsin immunoreactivity. A ratio 1:1-1:2 between ganglion cells and photoreceptors points to a linear connection (photoreceptors/bipolar neurons/ganglion cells) in the retina and indicates that both skinks more likely possess good visual acuity, even in the peripheral retina. The MRI analysis revealed differences between the species concerning the eye structures, with a more spherical eye shape for S. scincus, as well as a more flattened lens. The relative lens diameter of both species seems to correspond to a rather photopic pattern. Beside the fact that S. scincus and E. schneideri have different lifestyles, their visual capacities seem similar, and, generally speaking, these two psammophilic species theoretically exhibit visual capacities not far away from non-fossorial species.

12.
Biology (Basel) ; 9(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664518

RESUMO

Blood-brain barrier (BBB) crossing and brain penetration are really challenging for the delivery of therapeutic agents and imaging probes. The development of new crossing strategies is needed, and a wide range of approaches (invasive or not) have been proposed so far. The receptor-mediated transcytosis is an attractive mechanism, allowing the non-invasive penetration of the BBB. Among available targets, the low-density lipoprotein (LDL) receptor (LDLR) shows favorable characteristics mainly because of the lysosome-bypassed pathway of LDL delivery to the brain, allowing an intact discharge of the carried ligand to the brain targets. The phage display technology was employed to identify a dodecapeptide targeted to the extracellular domain of LDLR (ED-LDLR). This peptide was able to bind the ED-LDLR in the presence of natural ligands and dissociated at acidic pH and in the absence of calcium, in a similar manner as the LDL. In vitro, our peptide was endocytosed by endothelial cells through the caveolae-dependent pathway, proper to the LDLR route in BBB, suggesting the prevention of its lysosomal degradation. The in vivo studies performed by magnetic resonance imaging and fluorescent lifetime imaging suggested the brain penetration of this ED-LDLR-targeted peptide.

13.
Biology (Basel) ; 9(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183292

RESUMO

Thyroid cancers are the most frequent endocrine cancers and their incidence is increasing worldwide. Thyroid nodules occur in over 19-68% of the population, but only 7-15% of them are diagnosed as malignant. Diagnosis relies on a fine needle aspiration biopsy, which is often inconclusive and about 90% of thyroidectomies are performed for benign lesions. Galectin-1 has been proposed as a confident biomarker for the discrimination of malignant from benign nodules. We previously identified by phage display two peptides (P1 and P7) targeting galectin-1, with the goal of developing imaging probes for non-invasive diagnosis of thyroid cancer. The peptides were coupled to ultra-small superparamagnetic particles of iron oxide (USPIO) or to a near-infrared dye (CF770) for non-invasive detection of galectin-1 expression in a mouse model of papillary thyroid cancer (PTC, as the most frequent one) by magnetic resonance imaging and fluorescence lifetime imaging. The imaging probes functionalized with the two peptides presented comparable image enhancement characteristics. However, those coupled to P7 were more favorable, and showed decreased retention by the liver and spleen (known for their galectin-1 expression) and high sensitivity (75%) and specificity (100%) of PTC detection, which confirm the aptitude of this peptide to discriminate human malignant from benign nodules (80% sensitivity, 100% specificity) previously observed by immunohistochemistry.

14.
J Drug Target ; 28(7-8): 831-851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31888393

RESUMO

Type 2 diabetes (T2D) is often linked to metabolic syndrome, which assembles various risk factors related to obesity. Plasma levels of adiponectin are decreased in T2D and obese subjects. Aiming to develop a peptide able to bind adiponectin receptors and modulate their signalling pathways, a 12-amino acid sequence homologous in AdipoR1/R2 has been targeted by phage display with a linear 12-mer peptide library. The selected peptide P17 recognises AdipoR1/R2 expressed by skeletal muscle, liver and pancreatic islets. In HepaRG and C2C12 cells, P17 induced the activation of AMPK (AMPKα-pT172) and the expression of succinate dehydrogenase and glucokinase; no cytotoxic effects were observed on HepaRG cells. In db/db mice, P17 promoted body weight and glycaemia stabilisation, decreased plasma triglycerides to the range of healthy mice and increased adiponectin (in high fat-fed mice) and insulin (in chow-fed mice) levels. It restored to the range of healthy mice the tissue levels and subcellular distribution of AdipoR1/R2, AMPKα-pT172 and PPARα-pS12. In liver, P17 reduced steatosis and apoptosis. The docking of P17 to AdipoR is reminiscent of the binding mechanism of adiponectin. To conclude, we have developed an AdipoR1/AdipoR2-targeted peptide that modulates adiponectin signalling pathways and has therapeutic relevance for T2D and obesity associated pathologies.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Adiponectina/biossíntese , Sequência de Aminoácidos/fisiologia , Insulina/biossíntese , Receptores de Adiponectina/metabolismo , Animais , Bacteriófagos , Humanos , Camundongos
15.
Materials (Basel) ; 13(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549296

RESUMO

Magnetic nanoparticles are intensively studied for magnetic resonance imaging (MRI) as contrast agents but yet there remained some gaps regarding their toxicity potential and clinical implications of their biodistribution in organs. This study presents the effects induced by magnetite nanoparticles encapsulated in polymeric micelles (MNP-DSPE-PEG) on biochemical markers, metabolic functions, and MRI signal in CD1 mice liver. Three groups of animals, one control and the other ones injected with a suspension of five, respectively, 15 mg Fe/kg bw nanoparticles, were monitored up to 14 days. The results indicated the presence of MNP-DSPE-PEG in the liver in the first two days of the experiment. The most significant biochemical changes also occurred in the first 3 days after exposure when the most severe histological changes were observed. The change of the MRI signal intensity on the T2-weighted images and increased transverse relaxation rates R2 in the liver were observed after the first minutes from the nanoparticle administration. The study shows that the alterations of biomarkers level resulting from exposure to MNP-DSPE-PEG are restored in time in mice liver. This was associated with a significant contrast on T2-weighted images and made us conclude that these nanoparticles might be potential candidates for use as a contrast agent in liver medical imaging.

16.
Mol Pharm ; 6(6): 1903-19, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19743879

RESUMO

Molecular and cellular imaging of atherosclerosis has garnered more interest at the beginning of the 21st century, with aims to image in vivo biological properties of plaque lesions. Apoptosis seems an attractive target for the diagnosis of vulnerable atherosclerotic plaques prone to a thrombotic event. The aim of the present work was to screen for apoptosis peptide binders by phage display with the final purpose to detect apoptotic cells in atherosclerotic plaques by magnetic resonance imaging (MRI). A phosphatidylserine-specific peptide identified by phage display was thus used to design an MRI contrast agent (CA), which was evaluated as a potential in vivo reporter of apoptotic cells. A library of linear 6-mer random peptides was screened in vitro against immobilized phosphatidylserine. Phage DNA was isolated and sequenced, and the affinity of peptides for phosphatidylserine was evaluated by enzyme-linked immunosorbent assay. The phosphatidylserine-specific peptide and its scrambled homologue were attached to a linker and conjugated to DTPA-isothiocyanate. The products were purified by dialysis and by column chromatography and complexed with gadolinium chloride. After their evaluation using apoptotic cells and a mouse model of liver apoptosis, the phosphatidylserine-targeted CA was used to image atherosclerotic lesions on ApoE(-/-) transgenic mice. Apoptotic cells were detected on liver and aorta specimens by the immunostaining of phosphatidylserine and of active caspase-3. Sequencing of the phage genome highlighted nine different peptides. Their alignment with amino acid sequences of relevant proteins revealed a frequent homology with Ca2+ channels, reminiscent of the function of annexins. Alignment with molecules involved in apoptosis provides a direct correlation between peptide selection and utility. The in vivo MRI studies performed at 4.7 T provide proof of concept that apoptosis-related pathologies could be diagnosed by MRI with a low molecular weight paramagnetic agent. The new CA could have real potential in the diagnosis and therapy monitoring of atherosclerotic disease and of other apoptosis-associated pathologies, such as cancer, ischemia, chronic inflammation, autoimmune disorders, transplant rejection, neurodegenerative disorders, and diabetes mellitus. The phage display-derived peptide could also play a potential therapeutic role through anticoagulant activity by mimicking the role of annexin V, the endogenous ligand of phosphatidylserine.


Assuntos
Apoptose/fisiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Peptídeos/química , Fosfatidilserinas/metabolismo , Animais , Apolipoproteínas E/genética , Caspase 3/análise , Células Cultivadas , Feminino , Imuno-Histoquímica , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Teóricos , Estrutura Molecular , Fosfatidilserinas/química
17.
Cardiovasc Res ; 78(1): 148-57, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18174291

RESUMO

AIMS: The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. METHODS AND RESULTS: The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. CONCLUSION: The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal-to-noise ratio, and the low immunogenicity of the mimetic molecule highlight its potential for an industrial and clinical implementation.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Meios de Contraste/metabolismo , Integrina alfaVbeta3/metabolismo , Angiografia por Ressonância Magnética/métodos , Compostos Organometálicos/metabolismo , Ácido Pentético/análogos & derivados , Animais , Aorta/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Ligação Competitiva , Meios de Contraste/farmacocinética , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos Organometálicos/farmacocinética , Ácido Pentético/metabolismo , Ácido Pentético/farmacocinética , Compostos Radiofarmacêuticos/metabolismo , Ratos , Ratos Wistar , Processamento de Sinais Assistido por Computador , Pentetato de Tecnécio Tc 99m/metabolismo
18.
Handb Exp Pharmacol ; (185 Pt 1): 135-65, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18626802

RESUMO

Even though the intrinsic magnetic resonance imaging (MRI) contrast is much more flexible than in other clinical imaging techniques, the diagnosis of several pathologies requires the involvement of contrast agents (CAs) that can enhance the difference between normal and diseased tissues by modifying their intrinsic parameters. MR CAs are indirect agents because they do not become visible by themselves as opposed to other imaging modalities. The signal enhancement produced by MRI CAs (i.e., the efficiency of the CAs) depends on their longitudinal (r1) and transverse (r2) relaxivity (expressed in s(-1) mmol(-1) 1), which is defined as the increase of the nuclear relaxation rate (the reciprocal of the relaxation time) of water protons produced by 1 mmol per liter of CA. Paramagnetic CAs (most of them complexes of gadolinium) are frequently used in clinics as extracellular, hepatobiliary or blood pool agents. Low molecular weight paramagnetic CAs have similar effects on R1 and R2, but the predominant effect at low doses is that of T1 shortening (and R1 enhancement). Thus, organs taking up such agents will become bright in a T1-weighted MRI sequence; these CAs are thus called positive contrast media. The CAs known as negative agents influence signal intensity mainly by shortening T2* and T2, which produces the darkening of the contrast-enhanced tissue. These CAs are generally composed of superparamagnetic nanoparticles, consisting of iron oxides (magnetite, Fe3O4, maghemite, gammaFe2O3, or other ferrites). Iron oxide nanoparticles are taken up by the monocyte-macrophage system, which explains their potential application as MRI markers of inflammatory and degenerative disorders. Most of the contemporary MRI CAs approved for clinical applications are non-specific for a particular pathology and report exclusively on the anatomy and the physiological status of various organs. A new generation of MRI CAs is progressively emerging in the current context of molecular imaging, agents that are designed to detect with a high specificity the cellular and molecular hallmarks of various pathologies.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Animais , Compostos Férricos/química , Gadolínio/química , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas , Modelos Químicos , Valor Preditivo dos Testes
19.
J Alzheimers Dis ; 60(4): 1547-1565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036827

RESUMO

The diagnosis of Alzheimer's disease (AD) is a critical step in the management of patients. We have developed a non-invasive diagnosis tool based on magnetic resonance molecular imaging (MRMI) of amyloid-ß peptide using ultra-small particles of iron oxide (USPIO) functionalized with a disulfide constrained cyclic heptapeptide (PHO) identified by phage display (USPIO-PHO). After previously demonstrating the optimal pharmacologic properties of USPIO-PHO and its capacity to cross the blood-brain barrier (BBB), the ability of USPIO-PHO to target amyloid plaques (AP) by MRMI has been validated in the present work on AD transgenic mice. The immunohistochemistry and immunofluorescent detection of USPIO-PHO on brain sections collected after in vivo MRMI studies enabled its colocalization with AP, confirming the BBB passage and specific targeting. The AP targeting by USPIO-PHO has been moreover corroborated by the good correlation between the number of AP detected with anti-amyloid ß antibody and Perls'-DAB staining. Finally, the crossing mechanism of USPIO-PHO through the BBB was elucidated, revealing the involvement of non-degradation pathway of caveolae, while the control contrast agent USPIO-PEG was not endocytosed by the human brain endothelial cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Molecular , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Permeabilidade Capilar , Linhagem Celular , Meios de Contraste , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Compostos Férricos/farmacocinética , Humanos , Imuno-Histoquímica , Masculino , Camundongos Transgênicos , Microvasos/citologia , Microvasos/metabolismo , Imagem Molecular/métodos , Peptídeos Cíclicos/farmacocinética , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Transcitose
20.
Med Oncol ; 34(11): 184, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986753

RESUMO

The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.


Assuntos
Carcinoma Papilar/metabolismo , Meios de Contraste/química , Galectina 1/metabolismo , Peptídeos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Ligação Competitiva , Carcinoma Papilar/diagnóstico por imagem , Caspase 3/metabolismo , Linhagem Celular Tumoral , Dextranos/química , Galectina 1/química , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/química , Conformação Proteica , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA