RESUMO
Relatlimab and nivolumab combination immunotherapy improves progression-free survival over nivolumab monotherapy in patients with unresectable advanced melanoma1. We investigated this regimen in patients with resectable clinical stage III or oligometastatic stage IV melanoma (NCT02519322). Patients received two neoadjuvant doses (nivolumab 480 mg and relatlimab 160 mg intravenously every 4 weeks) followed by surgery, and then ten doses of adjuvant combination therapy. The primary end point was pathologic complete response (pCR) rate2. The combination resulted in 57% pCR rate and 70% overall pathologic response rate among 30 patients treated. The radiographic response rate using Response Evaluation Criteria in Solid Tumors 1.1 was 57%. No grade 3-4 immune-related adverse events were observed in the neoadjuvant setting. The 1- and 2-year recurrence-free survival rate was 100% and 92% for patients with any pathologic response, compared to 88% and 55% for patients who did not have a pathologic response (P = 0.005). Increased immune cell infiltration at baseline, and decrease in M2 macrophages during treatment, were associated with pathologic response. Our results indicate that neoadjuvant relatlimab and nivolumab induces a high pCR rate. Safety during neoadjuvant therapy is favourable compared to other combination immunotherapy regimens. These data, in combination with the results of the RELATIVITY-047 trial1, provide further confirmation of the efficacy and safety of this new immunotherapy regimen.
Assuntos
Melanoma , Terapia Neoadjuvante , Nivolumabe , Humanos , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/cirurgia , Terapia Neoadjuvante/efeitos adversos , Terapia Neoadjuvante/métodos , Estadiamento de Neoplasias , Nivolumabe/efeitos adversos , Nivolumabe/uso terapêutico , Macrófagos/efeitos dos fármacos , Quimioterapia Combinada , Taxa de SobrevidaRESUMO
Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed1,2. Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy ( NCT02231775 , n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P = 0.001; RFS, 64% versus 32% at 2 years, P = 0.021). The findings were validated in several additional cohorts2-4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy (n = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy (P = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control (P = 0.0006 and P = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice (P = 0.018 and P = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients (P = 0.021 and P < 0.0001). Together, these results have important implications for therapy.
Assuntos
Antagonistas de Receptores de Andrógenos , Melanoma , Quinases de Proteína Quinase Ativadas por Mitógeno , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas B-raf , Receptores Androgênicos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Feminino , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Receptores Androgênicos/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Análise de SobrevidaRESUMO
Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers1-10 and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity11-15, although these have been less well-studied in ICB treatment16. A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling17 that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter18) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.
Assuntos
Linfócitos B/imunologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Estruturas Linfoides Terciárias/imunologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Biomarcadores Tumorais/análise , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Dendríticas Foliculares/citologia , Células Dendríticas Foliculares/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica/imunologia , Espectrometria de Massas , Melanoma/patologia , Melanoma/cirurgia , Metástase Neoplásica/genética , Fenótipo , Prognóstico , RNA-Seq , Receptores Imunológicos/imunologia , Análise de Célula Única , Linfócitos T/citologia , Linfócitos T/imunologia , TranscriptomaRESUMO
After the success of immunotherapy in the treatment of advanced metastatic cancer, further evaluation in earlier settings, including high-risk, surgically-resectable disease is underway. Potential benefits of a neoadjuvant immunotherapeutic approach include presurgical tumor shrinkage, reduced surgical morbidity, early eradication of micrometastases and prevention of distant disease, and greater antigen-specific T cell response. For some cancers, pathologic response has been established as a surrogate measure for long-term outcomes, therefore offering the ability for early and objective assessment of treatment efficacy and the potential to inform and personalize adjuvant treatment clinical decision-making. Leveraging the neoadjuvant treatment setting offers the ability to deeply interrogate longitudinal tissue in order to gain translatable, pan-malignancy insights into response and mechanisms of resistance to immunotherapy. Neoadjuvant immunotherapy across cancers was a focus of discussion at the virtual Immunotherapy Bridge meeting (December 1-2, 2021). Clinical, biomarker, and pathologic insights from prostate, breast, colon, and non-small-cell lung cancers, melanoma and non-melanoma skin cancers were discussed and are summarized in this report.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Imunoterapia , Neoplasias Pulmonares/patologia , Masculino , Melanoma/patologia , Terapia NeoadjuvanteRESUMO
Exciting advances in melanoma systemic therapies have presented the opportunity for surgical oncologists and their multidisciplinary colleagues to test the neoadjuvant systemic treatment approach in high-risk, resectable metastatic melanomas. Here we describe the state of the science of neoadjuvant systemic therapy (NAST) for melanoma, focusing on the surgical aspects and the key role of the surgical oncologist in this treatment paradigm. This paper summarizes the past decade of developments in melanoma treatment and the current evidence for NAST in stage III melanoma specifically. Issues of surgical relevance are discussed, including the risk of progression on NAST prior to surgery. Technical aspects, such as the definition of resectability for melanoma and the extent and scope of routine surgery are presented. Other important issues, such as the utility of radiographic response evaluation and method of pathologic response evaluation, are addressed. Surgical complications and perioperative management of NAST related adverse events are considered. The International Neoadjuvant Melanoma Consortium has the goal of harmonizing NAST trials in melanoma to facilitate rapid advances with new approaches, and facilitating the comparison of results across trials evaluating different treatment regimens. Our ultimate goals are to provide definitive proof of the safety and efficacy of NAST in melanoma, sufficient for NAST to become an acceptable standard of care, and to leverage this platform to allow more personalized, biomarker-driven, tailored approaches to subsequent treatment and surveillance.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/cirurgia , Terapia Neoadjuvante/métodos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Melanoma Maligno CutâneoAssuntos
Anticorpos Monoclonais Humanizados , Antígeno CTLA-4 , Resistência a Medicamentos , Nivolumabe , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Nivolumabe/efeitos adversos , Nivolumabe/uso terapêuticoRESUMO
Advances in the treatment of metastatic melanoma have improved responses and survival. However, many patients continue to experience resistance or toxicity to treatment, highlighting a crucial need to identify biomarkers and understand mechanisms of response and toxicity. Neoadjuvant therapy for regional metastases might improve operability and clinical outcomes over upfront surgery and adjuvant therapy, and has become an established role for drug development and biomarker discovery in other cancers (including locally advanced breast cancer, head and neck squamous cell carcinomas, gastroesophageal cancer, and anal cancer). Patients with clinically detectable stage III melanoma are ideal candidates for neoadjuvant therapy, because they represent a high-risk patient population with poor outcomes when treated with upfront surgery alone. Neoadjuvant therapy is now an active area of research for melanoma with numerous completed and ongoing trials (since 2014) with disparate designs, endpoints, and analyses under investigation. We have, therefore, established the International Neoadjuvant Melanoma Consortium with experts in medical oncology, surgical oncology, pathology, radiation oncology, radiology, and translational research to develop recommendations for investigating neoadjuvant therapy in melanoma to align future trial designs and correlative analyses. Alignment and consistency of neoadjuvant trials will facilitate optimal data organisation for future regulatory review and strengthen translational research across the melanoma disease continuum.
Assuntos
Melanoma/terapia , Terapia Neoadjuvante , Ensaios Clínicos como Assunto , Humanos , Melanoma/secundário , Seleção de PacientesRESUMO
BACKGROUND: Dual BRAF and MEK inhibition produces a response in a large number of patients with stage IV BRAF-mutant melanoma. The existing standard of care for patients with clinical stage III melanoma is upfront surgery and consideration for adjuvant therapy, which is insufficient to cure most patients. Neoadjuvant targeted therapy with BRAF and MEK inhibitors (such as dabrafenib and trametinib) might provide clinical benefit in this high-risk p opulation. METHODS: We undertook this single-centre, open-label, randomised phase 2 trial at the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Eligible participants were adult patients (aged ≥18 years) with histologically or cytologically confirmed surgically resectable clinical stage III or oligometastatic stage IV BRAFV600E or BRAFV600K (ie, Val600Glu or Val600Lys)-mutated melanoma. Eligible patients had to have an Eastern Cooperative Oncology Group performance status of 0 or 1, a life expectancy of more than 3 years, and no previous exposure to BRAF or MEK inhibitors. Exclusion criteria included metastases to bone, brain, or other sites where complete surgical excision was in doubt. We randomly assigned patients (1:2) to either upfront surgery and consideration for adjuvant therapy (standard of care group) or neoadjuvant plus adjuvant dabrafenib and trametinib (8 weeks of neoadjuvant oral dabrafenib 150 mg twice per day and oral trametinib 2 mg per day followed by surgery, then up to 44 weeks of adjuvant dabrafenib plus trametinib starting 1 week after surgery for a total of 52 weeks of treatment). Randomisation was not masked and was implemented by the clinical trial conduct website maintained by the trial centre. Patients were stratified by disease stage. The primary endpoint was investigator-assessed event-free survival (ie, patients who were alive without disease progression) at 12 months in the intent-to-treat population. This trial is registered at ClinicalTrials.gov, number NCT02231775. FINDINGS: Between Oct 23, 2014, and April 13, 2016, we randomly assigned seven patients to standard of care, and 14 to neoadjuvant plus adjuvant dabrafenib and trametinib. The trial was stopped early after a prespecified interim safety analysis that occurred after a quarter of the participants had been accrued revealed significantly longer event-free survival with neoadjuvant plus adjuvant dabrafenib and trametinib than with standard of care. After a median follow-up of 18·6 months (IQR 14·6-23·1), significantly more patients receiving neoadjuvant plus adjuvant dabrafenib and trametinib were alive without disease progression than those receiving standard of care (ten [71%] of 14 patients vs none of seven in the standard of care group; median event-free survival was 19·7 months [16·2-not estimable] vs 2·9 months [95% CI 1·7-not estimable]; hazard ratio 0·016, 95% CI 0·00012-0·14, p<0·0001). Neoadjuvant plus adjuvant dabrafenib and trametinib were well tolerated with no occurrence of grade 4 adverse events or treatment-related deaths. The most common adverse events in the neoadjuvant plus adjuvant dabrafenib and trametinib group were expected grade 1-2 toxicities including chills (12 patients [92%]), headache (12 [92%]), and pyrexia (ten [77%]). The most common grade 3 adverse event was diarrhoea (two patients [15%]). INTERPRETATION: Neoadjuvant plus adjuvant dabrafenib and trametinib significantly improved event-free survival versus standard of care in patients with high-risk, surgically resectable, clinical stage III-IV melanoma. Although the trial finished early, limiting generalisability of the results, the findings provide proof-of-concept and support the rationale for further investigation of neoadjuvant approaches in this disease. This trial is currently continuing accrual as a single-arm study of neoadjuvant plus adjuvant dabrafenib and trametinib. FUNDING: Novartis Pharmaceuticals Corporation.
Assuntos
Imidazóis/administração & dosagem , Melanoma/tratamento farmacológico , Melanoma/mortalidade , Oximas/administração & dosagem , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Centros Médicos Acadêmicos , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Institutos de Câncer , Quimioterapia Adjuvante/métodos , Intervalos de Confiança , Intervalo Livre de Doença , Humanos , Melanoma/patologia , Melanoma/cirurgia , Pessoa de Meia-Idade , Cirurgia de Mohs/métodos , Terapia Neoadjuvante/métodos , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Medição de Risco , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Padrão de Cuidado , Análise de Sobrevida , Texas , Resultado do TratamentoRESUMO
Gut-microbiota modulation shows promise in improving immune-checkpoint blockade (ICB) response; however, precision biomarker-driven, placebo-controlled trials are lacking. We performed a multicenter, randomized placebo-controlled, biomarker-stratified phase I trial in patients with ICB-naïve metastatic melanoma using SER-401, an orally delivered Firmicutesenriched spore formulation. Fecal microbiota signatures were characterized at baseline; patients were stratified by high versus low Ruminococcaceae abundance prior to randomization to the SER-401 arm (oral vancomycin-preconditioning/SER-401 alone/nivolumab + SER-401), versus the placebo arm [placebo antibiotic/placebo microbiome modulation (PMM)/nivolumab + PMM (NCT03817125)]. Analysis of 14 accrued patients demonstrated that treatment with SER-401 + nivolumab was safe, with an overall response rate of 25% in the SER-401 arm and 67% in the placebo arm (though the study was underpowered related to poor accrual during the COVID-19 pandemic). Translational analyses demonstrated that vancomycin preconditioning was associated with the disruption of the gut microbiota and impaired immunity, with incomplete recovery at ICB administration (particularly in patients with high baseline Ruminococcaceae). These results have important implications for future microbiome modulation trials. Significance: This first-of-its-kind, placebo-controlled, randomized biomarker-driven microbiome modulation trial demonstrated that vancomycin + SER-401 and anti-PD-1 are safe in melanoma patients. Although limited by poor accrual during the pandemic, important insights were gained via translational analyses, suggesting that antibiotic preconditioning and interventional drug dosing regimens should be carefully considered when designing such trials.
Assuntos
Antibacterianos , Microbioma Gastrointestinal , Melanoma , Humanos , Melanoma/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Biomarcadores Tumorais , Vancomicina/uso terapêutico , Adulto , COVID-19/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologiaRESUMO
Based on the demonstrated clinical activity of immune-checkpoint blockade (ICB) in advanced dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS), we conducted a randomized, non-comparative phase 2 trial ( NCT03307616 ) of neoadjuvant nivolumab or nivolumab/ipilimumab in patients with resectable retroperitoneal DDLPS (n = 17) and extremity/truncal UPS (+ concurrent nivolumab/radiation therapy; n = 10). The primary end point of pathologic response (percent hyalinization) was a median of 8.8% in DDLPS and 89% in UPS. Secondary end points were the changes in immune infiltrate, radiographic response, 12- and 24-month relapse-free survival and overall survival. Lower densities of regulatory T cells before treatment were associated with a major pathologic response (hyalinization > 30%). Tumor infiltration by B cells was increased following neoadjuvant treatment and was associated with overall survival in DDLPS. B cell infiltration was associated with higher densities of regulatory T cells before treatment, which was lost upon ICB treatment. Our data demonstrate that neoadjuvant ICB is associated with complex immune changes within the tumor microenvironment in DDLPS and UPS and that neoadjuvant ICB with concurrent radiotherapy has significant efficacy in UPS.
Assuntos
Inibidores de Checkpoint Imunológico , Lipossarcoma , Terapia Neoadjuvante , Neoplasias Retroperitoneais , Humanos , Lipossarcoma/tratamento farmacológico , Lipossarcoma/imunologia , Terapia Neoadjuvante/métodos , Neoplasias Retroperitoneais/tratamento farmacológico , Neoplasias Retroperitoneais/imunologia , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Idoso , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Adulto , Sarcoma/terapia , Sarcoma/imunologia , Sarcoma/tratamento farmacológico , Nivolumabe/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/efeitos dos fármacosRESUMO
Importance: The gut microbiome modulates the immune system and responses to immunotherapy in patients with late-stage melanoma. It is unknown whether fecal microbiota profiles differ between healthy individuals and patients with melanoma or if microbiota profiles differ among patients with different stages of melanoma. Defining gut microbiota profiles in individuals without melanoma and those with early-stage and late-stage melanoma may reveal features associated with disease progression. Objective: To characterize and compare gut microbiota profiles between healthy volunteers and patients with melanoma and between patients with early-stage and late-stage melanoma. Design, Setting, and Participants: This single-site case-control study took place at an academic comprehensive cancer center. Fecal samples were collected from systemic treatment-naive patients with stage I to IV melanoma from June 1, 2015, to January 31, 2019, and from healthy volunteers from June 1, 2021, to January 31, 2022. Patients were followed up for disease recurrence until November 30, 2021. Main Outcomes and Measures: Fecal microbiota was profiled by 16S ribosomal RNA sequencing. Clinical and pathologic characteristics, treatment, and disease recurrence were extracted from electronic medical records. Fecal microbiome diversity, taxonomic profiles and inferred functional profiles were compared between groups. Results: A total of 228 participants were enrolled (126 men [55.3%]; median age, 59 [range, 21-90] years), including 49 volunteers without melanoma, 38 patients with early-stage melanoma (29 with stage I or melanoma in situ and 9 with stage II), and 141 with late-stage melanoma (66 with stage III and 75 with stage IV). Community differences were observed between patients with melanoma and volunteers. Patients with melanoma had a higher relative abundance of Fusobacterium compared with controls on univariate analysis (0.19% vs 0.003%; P < .001), but this association was attenuated when adjusted for covariates (log2 fold change of 5.18 vs controls; P = .09). Microbiomes were distinct between patients with early-stage and late-stage melanoma. Early-stage melanoma had a higher alpha diversity (Inverse Simpson Index 14.6 [IQR, 9.8-23.0] vs 10.8 [IQR, 7.2-16.8]; P = .003), and a higher abundance of the genus Roseburia on univariate analysis (2.4% vs 1.2%; P < .001) though statistical significance was lost with covariate adjustment (log2 fold change of 0.86 vs controls; P = .13). Multiple functional pathways were differentially enriched between groups. No associations were observed between the microbial taxa and disease recurrence in patients with stage III melanoma treated with adjuvant immunotherapy. Conclusions and Relevance: The findings of this case-control study suggest that fecal microbiota profiles were significantly different among patients with melanoma and controls and between patients with early-stage and late-stage melanoma. Prospective investigations of the gut microbiome and changes that occur with disease progression may identify future microbial targets for intervention.
Assuntos
Microbioma Gastrointestinal , Melanoma , Masculino , Humanos , Pessoa de Meia-Idade , Microbioma Gastrointestinal/imunologia , Estudos Prospectivos , Estudos de Casos e Controles , Progressão da Doença , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Treatment options for patients with melanoma brain metastasis (MBM) have changed significantly in the last decade. Few studies have evaluated changes in outcomes and factors associated with survival in MBM patients over time. The aim of this study is to evaluate changes in clinical features and overall survival (OS) for MBM patients. METHODS: Patients diagnosed with MBMs from 1/1/2009 to 12/31/2013 (Prior Era; PE) and 1/1/2014 to 12/31/2018 (Current Era; CE) at The University of Texas MD Anderson Cancer Center were included in this retrospective analysis. The primary outcome measure was OS. Log-rank test assessed differences between groups; multivariable analyses were performed with Cox proportional hazards models and recursive partitioning analysis (RPA). RESULTS: A total of 791 MBM patients (PE, n = 332; CE, n = 459) were included in analysis. Median OS from MBM diagnosis was 10.3 months (95% CI, 8.9-12.4) and improved in the CE vs PE (14.4 vs 10.3 months, P < .001). Elevated serum lactate dehydrogenase (LDH) was the only factor associated with worse OS in both PE and CE patients. Factors associated with survival in CE MBM patients included patient age, primary tumor Breslow thickness, prior immunotherapy, leptomeningeal disease, symptomatic MBMs, and whole brain radiation therapy. Several factors associated with OS in the PE were not significant in the CE. RPA demonstrated that elevated serum LDH and prior immunotherapy treatment are the most important determinants of survival in CE MBM patients. CONCLUSIONS: OS and factors associated with OS have changed for MBM patients. This information can inform contemporary patient management and clinical investigations.
Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Estudos Retrospectivos , Melanoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Modelos de Riscos Proporcionais , Imunoterapia , PrognósticoRESUMO
There is a critical need for effective treatments for leptomeningeal disease (LMD). Here, we report the interim analysis results of an ongoing single-arm, first-in-human phase 1/1b study of concurrent intrathecal (IT) and intravenous (IV) nivolumab in patients with melanoma and LMD. The primary endpoints are determination of safety and the recommended IT nivolumab dose. The secondary endpoint is overall survival (OS). Patients are treated with IT nivolumab alone in cycle 1 and IV nivolumab is included in subsequent cycles. We treated 25 patients with metastatic melanoma using 5, 10, 20 and 50 mg of IT nivolumab. There were no dose-limiting toxicities at any dose level. The recommended IT dose of nivolumab is 50 mg (with IV nivolumab 240 mg) every 2 weeks. Median OS was 4.9 months, with 44% and 26% OS rates at 26 and 52 weeks, respectively. These initial results suggest that concurrent IT and IV nivolumab is safe and feasible with potential efficacy in patients with melanoma LMD, including in patients who had previously received anti-PD1 therapy. Accrual to the study continues, including in patients with lung cancer. ClinicalTrials.gov registration: NCT03025256 .
Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Nivolumabe , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Melanoma/patologia , Neoplasias Pulmonares/tratamento farmacológico , Resultado do Tratamento , IpilimumabRESUMO
PURPOSE: Overweight/obese (OW/OB) patients with metastatic melanoma unexpectedly have improved outcomes with immune checkpoint inhibitors (ICI) and BRAF-targeted therapies. The mechanism(s) underlying this association remain unclear, thus we assessed the integrated molecular, metabolic, and immune profile of tumors, as well as gut microbiome features, for associations with patient body mass index (BMI). EXPERIMENTAL DESIGN: Associations between BMI [normal (NL < 25) or OW/OB (BMI ≥ 25)] and tumor or microbiome characteristics were examined in specimens from 782 patients with metastatic melanoma across 7 cohorts. DNA associations were evaluated in The Cancer Genome Atlas cohort. RNA sequencing from 4 cohorts (n = 357) was batch corrected and gene set enrichment analysis (GSEA) by BMI category was performed. Metabolic profiling was conducted in a subset of patients (x = 36) by LC/MS, and in flow-sorted melanoma tumor cells (x = 37) and patient-derived melanoma cell lines (x = 17) using the Seahorse XF assay. Gut microbiome features were examined in an independent cohort (n = 371). RESULTS: DNA mutations and copy number variations were not associated with BMI. GSEA demonstrated that tumors from OW/OB patients were metabolically quiescent, with downregulation of oxidative phosphorylation and multiple other metabolic pathways. Direct metabolite analysis and functional metabolic profiling confirmed decreased central carbon metabolism in OW/OB metastatic melanoma tumors and patient-derived cell lines. The overall structure, diversity, and taxonomy of the fecal microbiome did not differ by BMI. CONCLUSIONS: These findings suggest that the host metabolic phenotype influences melanoma metabolism and provide insight into the improved outcomes observed in OW/OB patients with metastatic melanoma treated with ICIs and targeted therapies. See related commentary by Smalley, p. 5.
Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Fatores de Risco , Variações do Número de Cópias de DNA , Obesidade/complicações , Sobrepeso , Melanoma/genética , Melanoma/complicações , Índice de Massa CorporalRESUMO
Immune-checkpoint inhibitors (ICI), although revolutionary in improving long-term survival outcomes, are mostly effective in patients with immune-responsive tumors. Most patients with cancer either do not respond to ICIs at all or experience disease progression after an initial period of response. Treatment resistance to ICIs remains a major challenge and defines the biggest unmet medical need in oncology worldwide. In a collaborative workshop, thought leaders from academic, biopharma, and nonprofit sectors convened to outline a resistance framework to support and guide future immune-resistance research. Here, we explore the initial part of our effort by collating seminal discoveries through the lens of known biological processes. We highlight eight biological processes and refer to them as immune resistance nodes. We examine the seminal discoveries that define each immune resistance node and pose critical questions, which, if answered, would greatly expand our notion of immune resistance. Ultimately, the expansion and application of this work calls for the integration of multiomic high-dimensional analyses from patient-level data to produce a map of resistance phenotypes that can be utilized to guide effective drug development and improved patient outcomes.
Assuntos
Antineoplásicos Imunológicos , Neoplasias , Antineoplásicos Imunológicos/efeitos adversos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.