Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
NMR Biomed ; 37(6): e5127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450807

RESUMO

Multiple sclerosis (MS) is an autoimmune degenerative disease targeting white matter in the central nervous system. The most common animal model that mimics MS is experimental autoimmune encephalomyelitis (EAE) and it plays a crucial role in pharmacological research, from the identification of a therapeutic target to the in vivo validation of efficacy. Magnetic resonance imaging (MRI) is largely used to detect MS lesions, and resting-state functional MRI (rsfMRI) to investigate alterations in the brain functional connectivity (FC). MRI was mainly used in EAE studies to detect lesions in the spinal cord and brain. The current longitudinal MRI study aims to validate rsfMRI as a biomarker of the disease progression in the myelin oligodendrocyte glycoprotein 35-55 induced EAE animal model of MS. MR images were acquired 14, 25, and 50 days postimmunization. Seed-based analysis was used to investigate the whole-brain FC with some predefined areas, such as the thalamic regions, cerebellum, motor and somatosensory cortex. When compared with the control group, the EAE group exhibited a slightly altered FC and a decreasing trend in the total number of activated voxels along the disease progression. The most interesting result regards the whole-brain FC with the cerebellum. A hyperconnectivity behavior was found at an early phase and a significant reduced connectivity at a late phase. Moreover, we found a negative correlation between the total number of activated voxels during the late phase and the cumulative disease index. The results obtained provide a clinically relevant experimental platform that may be pivotal for the elucidation of the key mechanisms of accumulation of irreversible disability, as well as the development of innovative therapies for MS. Moreover, the negative correlation between the disease severity and the size of the activated area suggests a possible research pathway to follow for the resolution of the clinico-radiological paradox.


Assuntos
Encéfalo , Encefalomielite Autoimune Experimental , Imageamento por Ressonância Magnética , Descanso , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/fisiopatologia , Animais , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Modelos Animais de Doenças
2.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638538

RESUMO

Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of weight-bearing joints with detrimental effects on cartilage volume as well as cartilage damage, generating inflammation in the joint structure. The etiology of OA is multifactorial. Currently, therapies are mainly addressing the physical and occupational aspects of osteoarthritis using pharmacologic pain treatment and/or surgery to manage the symptomatology of the disease with no specific regard to disease progression or prevention. Herein, we highlight alternative therapeutics for OA specifically considering innovative and encouraging translational methods with the use of adipose mesenchymal stem cells.


Assuntos
Tecido Adiposo/citologia , Condrócitos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite do Joelho/terapia , Medicina Regenerativa/métodos , Cartilagem Articular/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoartrite do Joelho/patologia , Estresse Mecânico
3.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455791

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motoneurons. To date, there is no effective treatment available. Exosomes are extracellular vesicles that play important roles in intercellular communication, recapitulating the effect of origin cells. In this study, we tested the potential neuroprotective effect of exosomes isolated from adipose-derived stem cells (ASC-exosomes) on the in vivo model most widely used to study ALS, the human SOD1 gene with a G93A mutation (SOD1(G93A)) mouse. Moreover, we compared the effect of two different routes of exosomes administration, intravenous and intranasal. The effect of exosomes administration on disease progression was monitored by motor tests and analysis of lumbar motoneurons and glial cells, neuromuscular junction, and muscle. Our results demonstrated that repeated administration of ASC-exosomes improved the motor performance; protected lumbar motoneurons, the neuromuscular junction, and muscle; and decreased the glial cells activation in treated SOD1(G93A) mice. Moreover, exosomes have the ability to home to lesioned ALS regions of the animal brain. These data contribute by providing additional knowledge for the promising use of ASC-exosomes as a therapy in human ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Tecido Adiposo/citologia , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Movimento , Mutação de Sentido Incorreto , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349299

RESUMO

Autologous fat grafting is a surgical technique in which adipose tissue is transferred from one area of the body to another, in order to reconstruct or regenerate damaged or injured tissues. Before reinjection, adipose tissue needs to be purified from blood and cellular debris to avoid inflammation and preserve the graft viability. To perform this purification, different enzymatic and mechanical methods can be used. In this study, we characterized in vitro the product of a closed automatic device based on mechanical disaggregation, named Rigenera®, focusing on two sites of adipose tissue harvesting. At first, we optimized the Rigenera® operating timing, demonstrating that 60 s of treatment allows a higher cellular yield, in terms of the cell number and growth rate. This result optimizes the mechanical disaggregation and it can increase the clinical efficiency of the final product. When comparing the extracted adipose samples from the thigh and abdomen, our results showed that the thigh provides a higher number of mesenchymal-like cells, with a faster replication rate and a higher ability to form colonies. We can conclude that by collecting adipose tissue from the thigh and treating it with the Rigenera® device for 60 s, it is possible to obtain the most efficient product.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Abdome , Biomarcadores , Diferenciação Celular , Separação Celular , Sobrevivência Celular , Humanos , Imunofenotipagem , Coxa da Perna
5.
Int J Mol Sci ; 21(6)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197394

RESUMO

: Background: Cellulite is a condition in which the skin has a dimpled lumpy appearance. The main causes of cellulite development, studied until now, comprehends modified sensitivity to estrogens, the damage of microvasculature present among dermis and hypodermis. The differences of adipose tissue architecture between male and female might make female more susceptible to cellulite. Adipose tissue is seen to be deeply modified during cellulite development. Our study tried to understand the overall features within and surrounding cellulite to apply the best therapeutic approach. METHODS: Samples of gluteal femoral area were collected from cadavers and women who had undergone surgical treatment to remove orange peel characteristics on the skin. Samples from cadavers were employed for an accurate study of cellulite using magnetic resonance imaging at 7 Tesla and for light microscopy. Specimens from patients were employed for the proteomic analysis, which was performed using high resolution mass spectroscopy (MS). Stromal vascular fraction (SVF) was obtained from the samples, which was studied using MS and flow cytometry. RESULTS: light and electron microscopy of the cellulite affected area showed a morphology completely different from the other usual adipose depots. In cellulite affected tissues, sweat glands associated with adipocytes were found. In particular, there were vesicles in the extracellular matrix, indicating a crosstalk between the two different components. Proteomic analysis showed that adipose tissue affected by cellulite is characterized by high degree of oxidative stress and by remodeling phenomena. CONCLUSIONS: The novel aspects of this study are the peculiar morphology of adipose tissue affected by cellulite, which could influence the surgical procedures finalized to the reduction of dimpling, based on the collagen fibers cutting. The second novel aspect is the role played by the mesenchymal stem cells isolated from stromal vascular fraction of adipose tissue affected by cellulite.


Assuntos
Celulite , Derme , Espectrometria de Massas , Proteômica , Gordura Subcutânea , Adulto , Celulite/metabolismo , Celulite/patologia , Derme/metabolismo , Derme/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/metabolismo , Gordura Subcutânea/ultraestrutura
6.
Magn Reson Med ; 79(1): 459-469, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370153

RESUMO

PURPOSE: The first part of the experiment identifies and validates MRI biomarkers distinctive of the disease progression in the transgenic superoxide dismutase gene (SOD1(G93A)) animal model. The second part assesses the efficacy of a mesenchymal stem cell-based therapy through the MRI biomarkers previously defined. METHODS: The first part identifies MRI differences between SOD1(G93A) and healthy mice. The second part of the experiment follows the disease evolution of stem cell-treated and non-stem-cell treated SOD1(G93A) mice. The analysis focused on voxel-based morphometry and T2 mapping on the brain tissues, and T2-weighted imaging and diffusion tensor imaging (DTI) on the hind limbs. RESULTS: Comparing diseased mice to healthy control revealed gray matter alterations in the brainstem area, accompanied by increased T2 relaxation time. Differences in muscle volume, muscle signal intensity, fractional anisotropy, axial diffusivity, and radial diffusivity were measured in the hind limbs. In the comparison between stem cell-treated mice and nontreated ones, differences in muscle volume, muscle signal intensity, and DTI-derived maps were found. CONCLUSION: MRI-derived biomarkers can be used to identify differences between stem cell-treated and nontreated SOD1(G93A) mice. Magn Reson Med 79:459-469, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Transplante de Células-Tronco , Células-Tronco , Superóxido Dismutase-1/genética , Animais , Anisotropia , Comportamento Animal , Biomarcadores/metabolismo , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Regiões Promotoras Genéticas , Superóxido Dismutase/genética , Transgenes
8.
J Cosmet Dermatol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638000

RESUMO

BACKGROUND: During the sexual maturation, gluteal femoral adipose tissue is subjected to numerous modifications, not observable in other regions, in particular in women and less in men. Other authors described this region, but they used imaging techniques having lower resolution, than MRI proposed in this study. High resolution imaging techniques might provide important and more detailed information about the anatomy of gluteal femoral region. METHODS: This study has been performed using 7 T-magnetic resonance imaging and ultrastructural analysis in order to provide accurate description of the subcutaneous adipose tissue and dermis of gluteal femoral region. In this study specimens harvested from cadavers and form living patients have been analyzed. RESULTS: The results showed the presence of three layers: superficial, middle, and deep, characterized by different organization of fat lobules. High resolution imaging showed the adipose papilla that originates from dermis and protrude in subcutaneous adipose tissue. Adipose papilla is characterized by a peculiar morphology with a basement, a neck and a head and these elements represent the functional subunits of adipose papilla. Moreover, ultrastructural study evidenced the relationship between adipocytes and sweat glands, regulated by lipid vesicles. CONCLUSIONS: This study provides important information about subcutaneous and dermal fat anatomy of gluteal femoral region, improving the past knowledge, and move toward a better understanding of the cellulite physiopathology.

9.
Magn Reson Med ; 70(3): 859-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23059893

RESUMO

PURPOSE: To investigate in vivo possible pH level alterations following an acute renal failure disease using a MRI-CEST pH responsive contrast agent. The impact of functional evolution in different renal compartments over time was also investigated. METHODS: a mouse model of acute kidney injury was obtained by glycerol-induced rhabdomyolysis. pH maps were obtained using Iopamidol (0.75 g iodine/kg b.w. corresponding to 2.0 mmol/kg) in a control group (n = 3) and in the acute kidney injury group (n = 6) at 1, 3, 7, 14, and 21 days after the damage induction at 7T. Histology assessment of renal damage and blood urea nitrogen levels were compared with pH maps. RESULTS: during the acute kidney injury, there was a robust increase of pH values, which peaked after 3 days, compared with the predamage situation. In addition, it was possible to detect changes in contrast detection between the different functional regions of the damaged kidneys. Moreover, a slow restoration of normal pH values was observed three weeks after the glycerol injection. CONCLUSIONS: pH appears to be a good parameter to assess the early detection of kidney injury as well as it acts as a reporter of the recovery toward the physiologic functionality.


Assuntos
Injúria Renal Aguda/metabolismo , Meios de Contraste , Iopamidol , Imageamento por Ressonância Magnética , Injúria Renal Aguda/fisiopatologia , Animais , Concentração de Íons de Hidrogênio , Camundongos
10.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626834

RESUMO

Mesenchymal stem cells extracted from adipose tissue are particularly promising given the ease of harvest by standard liposuction and reduced donor site morbidity. This study proposes a novel enzymatic method for isolating stem cells using Vibrio alginolyticus collagenase, obtaining a high-quality product in a reduced time. Initially, the enzyme concentration and incubation time were studied by comparing cellular yield, proliferation, and clonogenic capacities. The optimized protocol was phenotypically characterized, and its ability to differentiate in the mesodermal lineages was evaluated. Subsequently, that protocol was compared with two Clostridium histolyticum-based collagenases, and other tests for cellular integrity were performed to evaluate the enzyme's effect on expanded cells. The best results showed that using a concentration of 3.6 mg/mL Vibrio alginolyticus collagenase allows extracting stem cells from adipose tissue after 20 min of enzymatic reaction like those obtained with Clostridium histolyticum-based collagenases after 45 min. Moreover, the extracted cells with Vibrio alginolyticus collagenase presented the phenotypic characteristics of stem cells that remain after culture conditions. Finally, it was seen that Vibrio alginolyticus collagenase does not reduce the vitality of expanded cells as Clostridium histolyticum-based collagenase does. These findings suggest that Vibrio alginolyticus collagenase has great potential in regenerative medicine, given its degradation selectivity by protecting vital structures for tissue restructuration.


Assuntos
Colagenases , Vibrio alginolyticus , Projetos de Pesquisa , Células-Tronco , Tecido Adiposo
11.
Cell Transplant ; 32: 9636897231175968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243545

RESUMO

Fat graft is widely used in plastic and reconstructive surgery. The size of the injectable product, the unpredictable fat resorption rates, and subsequent adverse effects make it tricky to inject untreated fat into the dermal layer. Mechanical emulsification of fat tissue, which Tonnard introduced, solves these problems, and the product obtained was called nanofat. Nanofat is widely used in clinical and aesthetic settings to treat facial compartments, hypertrophic and atrophic scars, wrinkle attenuation, skin rejuvenation, and alopecia. Several studies demonstrate that the tissue regeneration effects of nanofat are attributable to its rich content of adipose-derived stem cells. This study aimed to characterize Hy-Tissue Nanofat product by investigating morphology, cellular yield, adipose-derived stem cell (ASC) proliferation rate and clonogenic capability, immunophenotyping, and differential potential. The percentage of SEEA3 and CD105 expression was also analyzed to establish the presence of multilineage-differentiating stress-enduring (MUSE) cell. Our results showed that the Hy-Tissue Nanofat kit could isolate 3.74 × 104 ± 1.31 × 104 proliferative nucleated cells for milliliter of the treated fat. Nanofat-derived ASC can grow in colonies and show high differentiation capacity into adipocytes, osteocytes, and chondrocytes. Moreover, immunophenotyping analysis revealed the expression of MUSE cell antigen, making this nanofat enriched of pluripotent stem cell, increasing its potential in regenerative medicine. The unique characteristics of MUSE cells give a simple, feasible strategy for treating a variety of diseases.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Alprostadil , Células Cultivadas , Tecido Adiposo , Obesidade , Transplante de Células-Tronco
13.
Tissue Eng Regen Med ; 19(3): 477-490, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244884

RESUMO

BACKGROUND: Breast reconstruction after mastectomy using silicone implants is a surgical procedure that occasionally leads to capsular contracture formation. This phenomenon constitutes an important and persistent cause of morbidity, and no successful therapies are available to date. Recently, the use of acellular membranes as a protective material for silicone prostheses has been gaining attention due to their ability to prevent this adverse outcome. For this reason, the evaluation of the tissue-material integration and the induced biostimulation by acellular membranes results crucial. Evaluation of in vivo tissue integration and biostimulation induced by three different natural acellular collagen membranes. METHODS: Scanning electron microscopy was performed to analyse the membrane porosity and cells-biomaterial interaction in vitro, both in dry and wet conditions. Adipose-derived stem cells were cultured in the presence of membranes, and the colonisation capacity and differentiation potential of cells were assessed. In vivo tests and ex vivo analyses have been performed to evaluate dermal integration, absorption degree and biostimulation induced by the evaluated membrane. RESULTS: Analysis performed in vitro on the three different acellular dermal matrices evidenced that porosity and the morphological structure of membranes influence the liquid swelling ratio, affecting the cell mobility and the colonisation capacity. Moreover, the evaluated membranes influenced in different manner the adipose derived stem cells differentiation and their survival. In vivo investigation indicated that the absorption degree and the fluid accumulation surrounding the implant were membrane-dependent. Finally, ex vivo analysis confirmed the membrane-dependent behavior revealing different degree of tissue integration and biostimulation, such as adipogenic stimulation. CONCLUSION: The physico-chemical characteristics of the membranes play a key role in the biostimulation of the cellular environment inducing the development of well-organized adipose tissue.


Assuntos
Implante Mamário , Implantes de Mama , Implante Mamário/efeitos adversos , Implante Mamário/métodos , Implantes de Mama/efeitos adversos , Colágeno , Seguimentos , Mastectomia , Estudos Retrospectivos , Silicones
14.
J R Soc Interface ; 19(187): 20210800, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35193388

RESUMO

In cancer therapy, stimulus-responsive drug delivery systems are of particular interest for reducing side effects in healthy tissues and improving drug selectivity in the tumoral ones. Here, a strategy for the preparation of a photo-responsive cross-linked trilayer deposited onto an oil-in-water nanoemulsion via a layer-by-layer technique is reported. The system is made of completely biocompatible materials such as soybean oil, egg lecithin and glycol chitosan, with heparin as the polymeric shell. The oil core is pre-loaded with curcumin as a model lipophilic active molecule with anti-tumoral properties. The trilayer cross-linkage is performed via a photoinitiator-free thiol-ene 'click' reaction. In particular, the system is implemented with an o-nitrobenzyl group functionalized with a thiol moiety which can perform both the thiol-ene 'click' reaction and the cleavage meant for controlled drug release at two different wavelengths, respectively. So the preparation and characterization of a photo-responsive natural nanocarrier (PNC) that is stable under physiological conditions owing to the thiol-ene cross-linkage are reported. PNC performance has been assessed in vitro on melanoma cells as well as in vivo on xenograft tumour-induced mice.


Assuntos
Curcumina , Nanocápsulas , Neoplasias , Animais , Materiais Biocompatíveis , Humanos , Camundongos , Polímeros
15.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291935

RESUMO

This paper reports a comprehensive investigation of a magnetic nanoparticle (MNP), named M55, which belongs to a class of innovative doped ferrite nanomaterials, characterized by a self-limiting temperature. M55 is obtained from M48, an MNP previously described by our group, by implementing an additional purification step in the synthesis. M55, after citrate and glucose coating, is named G-M55. The present study aimed to demonstrate the properties of G-M55 as a diagnostic contrast agent for MRI and magnetic particle imaging (MPI), and as an antitumoral agent in magnetic fluid hyperthermia (MFH). Similar specific absorption rate values were obtained by standard MFH and by an MPI apparatus. This result is of interest in relation to the application of localized MFH by MPI apparatus. We demonstrated the biocompatibility of G-M55 in a triple-negative human breast cancer line (MDA-MB-231), and its efficacy as an MFH agent in the same cell line. We also demonstrated the efficacy of MFH treatment with G-M55 in an experimental model of breast cancer. Overall, our results pave the way for the clinical application of G-M55 as an MFH agent in breast cancer therapy, allowing not only efficient treatment by both standard MFH apparatus and MPI but also temperature monitoring.

16.
J Colloid Interface Sci ; 596: 332-341, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839358

RESUMO

Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.


Assuntos
Nanopartículas , Prata , Meios de Contraste , Ferro , Imageamento por Ressonância Magnética , Polímeros , Distribuição Tecidual
17.
Adv Healthc Mater ; 10(6): e2001632, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369251

RESUMO

The combination of multiple functions in a single nanoparticle (NP) represents a key advantage of nanomedicine compared to traditional medical approaches. This is well represented by radiotherapy in which the dose of ionizing radiation should be calibrated on sensitizers biodistribution. Ideally, this is possible when the drug acts both as radiation enhancer and imaging contrast agent. Here, an easy, one-step, laser-assisted synthetic procedure is used to generate iron-boron (Fe-B) NPs featuring the set of functions required to assist neutron capture therapy (NCT) with magnetic resonance imaging. The Fe-B NPs exceed by three orders of magnitude the payload of boron isotopes contained in clinical sensitizers. The Fe-B NPs have magnetic properties of interest also for magnetophoretic accumulation in tissues and magnetic hyperthermia to assist drug permeation in tissues. Besides, Fe-B NPs are biocompatible and undergo slow degradation in the lysosomal environment that facilitates in vivo clearance through the liver-spleen-kidneys pathway. Overall, the Fe-B NPs represent a new promising tool for future exploitation in magnetic resonance imaging-guided boron NCT at higher levels of efficacy and tolerability.


Assuntos
Nanopartículas , Terapia por Captura de Nêutron , Boro , Ferro , Imageamento por Ressonância Magnética , Distribuição Tecidual
18.
Animals (Basel) ; 11(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827964

RESUMO

Within the adult canine population, disabilities and symptoms including joint pain and functional impairment are commonly observed in articular cartilage lesions and present a challenging feat in the operating room. Clinical settings require less invasive and more minimally manipulated measures facilitated by innovative and advanced technology. Mesenchymal stem cells have recently been proposed and, furthermore, autologous adipose tissue administration via injection has emerged as a new albeit somewhat controversial therapeutic tool. The purpose of this study is to characterize canine autologous micro-fragmented adipose tissue (micrografts) by mechanical approach without substantial manipulations. Adipose tissue samples collected from six dogs were processed by a Rigenera device and by enzymatic digestion from two different body regions (lumbar and thigh region). Interestingly, the immunophenotypic analysis attested that cells from Rigenera® were highly positive for the mesenchymal stem cells markers CD73 and CD90, less positive for hematopoietic CD45 and CD34, and negative for MHC class II antibodies (which play a role in immune responses). Finally, the Rigenera® technology obtained micrografts with a 35% higher expression of the IL10 gene with relevant anti-inflammatory activities compared to the enzymatic digestion protocol. This evidence suggests a potential improved clinical outcome capable of modulating inflammation and immune responses.

19.
Nanotheranostics ; 5(3): 333-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732604

RESUMO

During the last few years, for therapeutic purposes in oncology, considerable attention has been focused on a method called magnetic fluid hyperthermia (MFH) based on local heating of tumor cells. In this paper, an innovative, promising nanomaterial, M48 composed of iron oxide-based phases has been tested. M48 shows self-regulating temperature due to the observable second order magnetic phase transition from ferromagnetic to paramagnetic state. A specific hydrophilic coating based on both citrate ions and glucose molecules allows high biocompatibility of the nanomaterial in biological matrices and its use in vivo. MFH mediator efficiency is demonstrated in vitro and in vivo in breast cancer cells and tumors, confirming excellent features for biomedical application. The temperature increase, up to the Curie temperature, gives rise to a phase transition from ferromagnetic to paramagnetic state, promoting a shortage of the r2 transversal relaxivity that allows a switch in the contrast in Magnetic Resonance Imaging (MRI). Combining this feature with a competitive high transversal (spin-spin) relaxivity, M48 paves the way for a new class of temperature sensitive T2 relaxing contrast agents. Overall, the results obtained in this study prepare for a more affordable and tunable heating mechanism preventing the damages of the surrounding healthy tissues and, at the same time, allowing monitoring of the temperature reached.


Assuntos
Hipertermia Induzida/métodos , Magnetismo , Nanopartículas Metálicas/química , Neoplasias/terapia , Temperatura , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Difração de Pó , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Tissue Eng Regen Med ; 14(9): 1213-1226, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32598097

RESUMO

Fat grafting is a well-established procedure in reconstructive, aesthetic, and regenerative medicine, in particular due to the presence in the adipose tissue of a high concentration of mesenchymal stem cells. The need to reduce fat processing times, for an immediate clinical use and regulatory restrictions on the degree of manipulation of human tissues, has led to the development of numerous devices for the mechanical, nonenzymatic processing of adipose tissue. The aim of this study is to describe the state of the art of mechanical devices used for fat processing, performing a technical analysis of the currently commercially available devices. This should facilitate the development of new devices that improve therapeutic results.


Assuntos
Lipectomia/instrumentação , Tecido Adiposo/transplante , Automação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA