Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 38(4): 911-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24460767

RESUMO

BACKGROUND: A number of studies have shown that ethanol (EtOH) activates dopamine neurocircuitries and is self-administered into the ventral tegmental area (VTA) of the rat brain. In vitro and in silico studies have showed that hyperpolarization-activated cyclic nucleotide-gated (HCN) ionic channels on VTA dopamine neurons may constitute a molecular target of EtOH; however, there is no in vivo evidence supporting this assumption. METHODS: Wistar-derived University of Chile Drinking (UChB) rats were microinjected into the VTA with a lentiviral vector coding for rat HCN-2 ionic channel or a control vector. Four days after vector administration, daily voluntary EtOH intake was assessed for 30 days under a free-access paradigm to 5% EtOH and water. After EtOH consumption studies, the effect of HCN-2 overexpression was also assessed on EtOH-induced conditioned place preference (CPP); EtOH-induced locomotion, and EtOH-induced dopamine release in the nucleus accumbens (NAcc). RESULTS: Rats microinjected with the HCN-2 coding vector into the VTA showed (i) a ~2-fold increase in their voluntary EtOH intake compared to control animals, (ii) lentiviral-HCN-2-treated animals also showed an increased CPP to EtOH (~3-fold), (iii) a significant higher locomotor activity (~2-fold), and (iv) increased dopamine release in NAcc upon systemic administration of EtOH (~2-fold). CONCLUSIONS: Overexpression of HCN-2 ionic channel in the VTA of rats results in an increase in voluntary EtOH intake, EtOH-induced CPP, locomotor activity, and dopamine release in NAcc, suggesting that HCN levels in the VTA are relevant for the rewarding properties of EtOH.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Regulação da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Canais de Potássio/biossíntese , Recompensa , Área Tegmentar Ventral/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Ratos , Ratos Wistar , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos
2.
Alcohol ; 48(6): 551-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086835

RESUMO

Salsolinol is formed non-enzymatically when ethanol-derived acetaldehyde binds to dopamine, yielding 2 distinct products, i.e., salsolinol and isosalsolinol. Early animal studies, revealing that salsolinol promotes alcohol consumption and recent evidence that animals will readily self-administer salsolinol into the posterior ventral tegmental area (p-VTA) together with the finding that salsolinol is able to induce conditioned place preference and to increase locomotor activity, have outlined a role of salsolinol in the behavioral and neurobiological actions of ethanol. Until recently, the only commercially available salsolinol was a mixture containing 85% salsolinol and 10-15% isosalsolinol. The possibility thus exists that either salsolinol or isosalsolinol explains the reinforcing properties of ethanol. We report here that a newly available salsolinol is free of isosalsolinol. Thus, salsolinol, free of isosalsolinol, was injected intracerebrally (30 pmol/0.2 µL, into the ventral tegmental area [VTA]) or intraperitoneally (i.p.) (10 mg/kg) to naïve rats bred as alcohol drinkers to study salsolinol's motivational effects and its role on voluntary ethanol intake. Salsolinol produced conditioned place preference and increased locomotor activity, whether injected intra-VTA or intraperitoneally. Following systemic (i.p.) administration of 10 mg/kg salsolinol, this molecule was detected in vivo by microdialysis of neostriatum, reaching an estimated concentration of 100 nM in the dialyzate. These results indicate that systemically administered salsolinol is able to cross the blood-brain barrier (BBB). Repeated administration of salsolinol sensitized rats to the locomotor activity and led to increases in voluntary ethanol consumption, which was prevented by intra-VTA pretreatment with naltrexone.


Assuntos
Consumo de Bebidas Alcoólicas , Isoquinolinas/farmacologia , Motivação/efeitos dos fármacos , Animais , Condicionamento Psicológico , Feminino , Isoquinolinas/farmacocinética , Atividade Motora/efeitos dos fármacos , Naltrexona/farmacologia , Ratos , Ratos Wistar , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA