Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(2): 400-412.e16, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299202

RESUMO

Root system architecture (RSA), the distribution of roots in soil, plays a major role in plant survival. RSA is shaped by multiple developmental processes that are largely governed by the phytohormone auxin, suggesting that auxin regulates responses of roots that are important for local adaptation. However, auxin has a central role in numerous processes, and it is unclear which molecular mechanisms contribute to the variation in RSA for environmental adaptation. Using natural variation in Arabidopsis, we identify EXOCYST70A3 as a modulator of the auxin system that causes variation in RSA by acting on PIN4 protein distribution. Allelic variation and genetic perturbation of EXOCYST70A3 lead to alteration of root gravitropic responses, resulting in a different RSA depth profile and drought resistance. Overall our findings suggest that the local modulation of the pleiotropic auxin pathway can gives rise to distinct RSAs that can be adaptive in specific environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Alelos , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Exocitose , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
2.
Nature ; 625(7996): 750-759, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200311

RESUMO

Iron is critical during host-microorganism interactions1-4. Restriction of available iron by the host during infection is an important defence strategy, described as nutritional immunity5. However, this poses a conundrum for externally facing, absorptive tissues such as the gut epithelium or the plant root epidermis that generate environments that favour iron bioavailability. For example, plant roots acquire iron mostly from the soil and, when iron deficient, increase iron availability through mechanisms that include rhizosphere acidification and secretion of iron chelators6-9. Yet, the elevated iron bioavailability would also be beneficial for the growth of bacteria that threaten plant health. Here we report that microorganism-associated molecular patterns such as flagellin lead to suppression of root iron acquisition through a localized degradation of the systemic iron-deficiency signalling peptide Iron Man 1 (IMA1) in Arabidopsis thaliana. This response is also elicited when bacteria enter root tissues, but not when they dwell on the outer root surface. IMA1 itself has a role in modulating immunity in root and shoot, affecting the levels of root colonization and the resistance to a bacterial foliar pathogen. Our findings reveal an adaptive molecular mechanism of nutritional immunity that affects iron bioavailability and uptake, as well as immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bactérias , Peptídeos e Proteínas de Sinalização Intracelular , Ferro , Moléculas com Motivos Associados a Patógenos , Raízes de Plantas , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Bactérias/imunologia , Bactérias/metabolismo , Flagelina/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/metabolismo , Imunidade Vegetal , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/imunologia , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Rizosfera , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo
3.
Annu Rev Cell Dev Biol ; 32: 103-126, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501448

RESUMO

One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.


Assuntos
Redes Reguladoras de Genes , Plantas/genética , Variação Genética , Genótipo , Fenótipo , Biologia de Sistemas
4.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222573

RESUMO

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Assuntos
Mudança Climática , Ecossistema , Humanos , Produtos Agrícolas , Carbono , Secas
5.
Plant J ; 117(2): 632-646, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871136

RESUMO

Plants are sessile organisms that constantly adapt to their changing environment. The root is exposed to numerous environmental signals ranging from nutrients and water to microbial molecular patterns. These signals can trigger distinct responses including the rapid increase or decrease of root growth. Consequently, using root growth as a readout for signal perception can help decipher which external cues are perceived by roots, and how these signals are integrated. To date, studies measuring root growth responses using large numbers of roots have been limited by a lack of high-throughput image acquisition, poor scalability of analytical methods, or low spatiotemporal resolution. Here, we developed the Root Walker pipeline, which uses automated microscopes to acquire time-series images of many roots exposed to controlled treatments with high spatiotemporal resolution, in conjunction with fast and automated image analysis software. We demonstrate the power of Root Walker by quantifying root growth rate responses at different time and throughput scales upon treatment with natural auxin and two mitogen-associated protein kinase cascade inhibitors. We find a concentration-dependent root growth response to auxin and reveal the specificity of one MAPK inhibitor. We further demonstrate the ability of Root Walker to conduct genetic screens by performing a genome-wide association study on 260 accessions in under 2 weeks, revealing known and unknown root growth regulators. Root Walker promises to be a useful toolkit for the plant science community, allowing large-scale screening of root growth dynamics for a variety of purposes, including genetic screens for root sensing and root growth response mechanisms.


Assuntos
Estudo de Associação Genômica Ampla , Raízes de Plantas , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Processamento de Imagem Assistida por Computador/métodos
6.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180123

RESUMO

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nat Chem Biol ; 19(11): 1331-1341, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37365405

RESUMO

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.


Assuntos
Proteínas de Arabidopsis , Brassinosteroides , Plasmodesmos/metabolismo , Reguladores de Crescimento de Plantas , Plantas/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
8.
Cell ; 143(4): 606-16, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21074051

RESUMO

The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Using high-resolution expression data from the Arabidopsis root, we identified a transcription factor, UPBEAT1 (UPB1), that regulates this balance. Genomewide expression profiling coupled with ChIP-chip analysis revealed that UPB1 directly regulates the expression of a set of peroxidases that modulate the balance of reactive oxygen species (ROS) between the zones of cell proliferation and the zone of cell elongation where differentiation begins. Disruption of UPB1 activity alters this ROS balance, leading to a delay in the onset of differentiation. Modulation of either ROS balance or peroxidase activity through chemical reagents affects the onset of differentiation in a manner consistent with the postulated UPB1 function. This pathway functions independently of auxin and cytokinin plant hormonal signaling. Comparison to ROS-regulated growth control in animals suggests that a similar mechanism is used in plants and animals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/citologia , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Diferenciação Celular , Proliferação de Células , Perfilação da Expressão Gênica , Raízes de Plantas/genética
9.
Nature ; 561(7722): E8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29973716

RESUMO

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

10.
Nature ; 553(7688): 342-346, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29320478

RESUMO

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Leucina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
11.
Development ; 147(24)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33144393

RESUMO

Temperature is one of the most impactful environmental factors to which plants adjust their growth and development. Although the regulation of temperature signaling has been extensively investigated for the aerial part of plants, much less is known and understood about how roots sense and modulate their growth in response to fluctuating temperatures. Here, we found that shoot and root growth responses to high ambient temperature are coordinated during early seedling development in Arabidopsis A shoot signaling module that includes HY5, the phytochromes and the PIFs exerts a central function in coupling these growth responses and maintaining auxin levels in the root. In addition to the HY5/PIF-dependent shoot module, a regulatory axis composed of auxin biosynthesis and auxin perception factors controls root responses to high ambient temperature. Taken together, our findings show that shoot and root developmental responses to temperature are tightly coupled during thermomorphogenesis and suggest that roots integrate energy signals with local hormonal inputs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Morfogênese/genética , Organogênese Vegetal/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais
12.
J Hist Dent ; 71(2): 89-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335301

RESUMO

From the second half of the 18th century to the last third of the 19th century, a period of about 100 years, perpendicular (vertical) extraction, became an ideal for many authors, since molars were the most difficult teeth to remove. However, extraction instruments available at that time, caused pronounced damage to the alveolar bone and gingiva. For many authors and clinicians, vertical extraction was the only way to meet this challenge. This approach to tooth removal, while viable, came to an end when anatomically shaped forceps, adapted to the different morphologies of the various teeth were introduced, thereby changing 19th century dentistry with a new standard for tooth removal.


Assuntos
Dente Serotino , Dente Impactado , Humanos , Dente Molar , Extração Dentária , Gengiva
13.
Plant Cell ; 31(5): 1012-1025, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30886128

RESUMO

According to the less-is-more hypothesis, gene loss is an engine for evolutionary change. Loss-of-function (LoF) mutations resulting in the natural knockout of protein-coding genes not only provide information about gene function but also play important roles in adaptation and phenotypic diversification. Although the less-is-more hypothesis was proposed two decades ago, it remains to be explored on a large scale. In this study, we identified 60,819 LoF variants in 1071 Arabidopsis (Arabidopsis thaliana) genomes and found that 34% of Arabidopsis protein-coding genes annotated in the Columbia-0 genome do not have any LoF variants. We found that nucleotide diversity, transposable element density, and gene family size are strongly correlated with the presence of LoF variants. Intriguingly, 0.9% of LoF variants with minor allele frequency larger than 0.5% are associated with climate change. In addition, in the Yangtze River basin population, 1% of genes with LoF mutations were under positive selection, providing important insights into the contribution of LoF mutations to adaptation. In particular, our results demonstrate that LoF mutations shape diverse phenotypic traits. Overall, our results highlight the importance of the LoF variants for the adaptation and phenotypic diversification of plants.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Variação Genética , Genoma de Planta/genética , Mutação com Perda de Função , Arabidopsis/fisiologia , Evolução Biológica , Fenótipo , Seleção Genética
14.
PLoS Genet ; 15(12): e1008126, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31856195

RESUMO

Phosphate represents a major limiting factor for plant productivity. Plants have evolved different solutions to adapt to phosphate limitation ranging from a profound tuning of their root system architecture and metabolic profile to the evolution of widespread mutualistic interactions. Here we elucidated plant responses and their genetic basis to different phosphate levels in a plant species that is widely used as a model for AM symbiosis: Lotus japonicus. Rather than focussing on a single model strain, we measured root growth and anion content in response to different levels of phosphate in 130 Lotus natural accessions. This allowed us not only to uncover common as well as divergent responses within this species, but also enabled Genome Wide Association Studies by which we identified new genes regulating phosphate homeostasis in Lotus. Among them, we showed that insertional mutants of a cytochrome B5 reductase and a Leucine-Rich-Repeat receptor showed different phosphate concentration in plants grown under phosphate sufficient condition. Under low phosphate conditions, we found a correlation between plant biomass and the decrease of plant phosphate concentration in plant tissues, representing a dilution effect. Altogether our data of the genetic and phenotypic variation within a species capable of AM complements studies that have been conducted in Arabidopsis, and advances our understanding of the continuum of genotype by phosphate level interaction existing throughout dicot plants.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Lotus/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Citocromo-B(5) Redutase/genética , Regulação da Expressão Gênica de Plantas , Lotus/genética , Mutação , Proteínas Quinases/genética , Nódulos Radiculares de Plantas/genética
15.
PLoS Genet ; 15(11): e1008392, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31693663

RESUMO

The molecular mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using Arabidopsis thaliana accessions, we analyzed RGR variation under combinatorial mineral nutrient deficiencies involving phosphorus (P), iron (Fe), and zinc (Zn). While -P stimulated early RGR of most accessions, -Fe or -Zn reduced it. The combination of either -P-Fe or -P-Zn led to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, root growth responses of the reference accession Columbia (Col-0) were not representative of the species under -P nor -Zn. Using a systems approach that combines GWAS, network-based candidate identification, and reverse genetic screen, we identified new genes that regulate root growth in -P-Fe: VIM1, FH6, and VDAC3. Our findings provide a framework to systematically identifying favorable allelic variations to improve root growth, and to better understand how plants sense and respond to multiple environmental cues.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Ferro/metabolismo , Raízes de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Deficiências de Ferro , Minerais/metabolismo , Nutrientes/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Biologia de Sistemas , Zinco/metabolismo
16.
Development ; 145(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439132

RESUMO

How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
17.
J Exp Bot ; 72(6): 2154-2164, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33458759

RESUMO

Iron bioavailability varies dramatically between soil types across the globe. This has given rise to high levels of natural variation in plant iron responses, allowing members of even a single species to thrive across a wide range of soil types. In recent years we have seen the use of genome-wide association analysis to identify natural variants underlying plant responses to changes in iron availability in both Arabidopsis and important crop species. These studies have provided insights into which genes have been important in shaping local adaptation to iron availability in different plant species and have allowed the discovery of novel regulators and mechanisms, not previously identified using mutagenesis approaches. Furthermore, these studies have allowed the identification of markers that can be used to accelerate breeding of future elite varieties with increased resilience to iron stress and improved nutritional quality. The studies highlighted here show that, in addition to studying plant responses to iron alone, it is important to consider these responses within the context of plant nutrition more broadly and to also consider iron regulation in relation to additional traits of agronomic importance such as yield and disease resistance.


Assuntos
Arabidopsis , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Ferro , Fenótipo , Melhoramento Vegetal
18.
J Exp Bot ; 72(7): 2727-2740, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33475698

RESUMO

Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host's root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated with the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a genome-wide association study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role for cytokinin in root immunity, paving the way for future research that will help in understanding the mechanisms underpinning root defenses.


Assuntos
Arabidopsis , Ralstonia solanacearum , Arabidopsis/genética , Citocininas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética
19.
Proc Natl Acad Sci U S A ; 115(20): E4710-E4719, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712840

RESUMO

Reactive oxygen species (ROS) are known to be important signal molecules that are involved in biotic and abiotic stress responses as well as in growth regulation. However, the molecular mechanisms by which ROS act as a growth regulator, as well as how ROS-dependent growth regulation relates to its roles in stress responses, are not well understood. We performed a time-course microarray analysis of Arabidopsis root tips upon treatment with hydrogen peroxide, which we named "ROS-map." Using the ROS-map, we identified an MYB transcription factor, MYB30, which showed a strong response to ROS treatment and is the key regulator of a gene network that leads to the hydrogen peroxide-dependent inhibition of root cell elongation. Intriguingly, this network contained multiple genes involved in very-long-chain fatty acid (VLCFA) transport. Finally, we showed that MYB30 is necessary for root growth regulation during defense responses, thus providing a molecular link between these two ROS-associated processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Meristema/imunologia , Imunidade Vegetal/genética , Raízes de Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Meristema/genética , Meristema/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/genética
20.
PLoS Genet ; 14(4): e1007304, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608565

RESUMO

Zinc is an essential micronutrient for all living organisms and is involved in a plethora of processes including growth and development, and immunity. However, it is unknown if there is a common genetic and molecular basis underlying multiple facets of zinc function. Here we used natural variation in Arabidopsis thaliana to study the role of zinc in regulating growth. We identify allelic variation of the systemic immunity gene AZI1 as a key for determining root growth responses to low zinc conditions. We further demonstrate that this gene is important for modulating primary root length depending on the zinc and defence status. Finally, we show that the interaction of the immunity signal azelaic acid and zinc level to regulate root growth is conserved in rice. This work demonstrates that there is a common genetic and molecular basis for multiple zinc dependent processes and that nutrient cues can determine the balance of growth and immune responses in plants.


Assuntos
Alelos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Variação Genética , Raízes de Plantas/crescimento & desenvolvimento , Zinco/deficiência , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ácidos Dicarboxílicos/metabolismo , Oryza/genética , Oryza/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA