Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(11): 3682-4, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26855072

RESUMO

At ultrahigh pressure (>110 GPa), H2 S is converted into a metallic phase that becomes superconducting with a record Tc of approximately 200 K. It has been proposed that the superconducting phase is body-centered cubic H3 S (Im3‾ m, a=3.089 Å) resulting from the decomposition reaction 3 H2 S→2 H3 S+S. The analogy between H2 S and H2 O led us to a very different conclusion. The well-known dissociation of water into H3 O(+) and OH(-) increases by orders of magnitude under pressure. H2 S is anticipated to behave similarly under pressure, with the dissociation process 2 H2 S→H3 S(+) +SH(-) leading to the perovskite structure (SH(-) )(H3 S(+) ). This phase consists of corner-sharing SH6 octahedra with SH(-) ions at each A site (the centers of the S8 cubes). DFT calculations show that the perovskite (SH(-) )(H3 S(+) ) is thermodynamically more stable than the Im3‾ m structure of H3 S, and suggest that the A site hydrogen atoms are most likely fluxional even at Tc .

3.
Sci Rep ; 11(1): 18978, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556751

RESUMO

During the last decade the cubic perovskite oxide EuTiO3 (ETO) has attracted enormous novel research activities due to possible multiferroicity, hidden magnetism far above its Néel temperature at TN = 5.5 K, structural instability at TS = 282 K, possible application as magneto-electric optic device, and strong spin-lattice coupling. Here we address a novel highlight of this compound by showing that well below TS a further structural phase transition occurs below 210 K without the application of an external magnetic field, and by questioning the assumed tetragonal symmetry of the structure below TS where tiny deviations from true tetragonality are observed by birefringence and XRD measurements. It is suggested that the competition in the second nearest neighbor spin-spin interaction modulated by the lattice dynamics is at the origin of these new observations.

5.
Sci Rep ; 7: 40621, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084444

RESUMO

The magneto-optical activity of high quality transparent thin films of insulating EuTiO3 (ETO) deposited on a thin SrTiO3 (STO) substrate, both being non-magnetic materials, are demonstrated to be a versatile tool for light modulation. The operating temperature is close to room temperature and allows for multiple device engineering. By using small magnetic fields birefringence of the samples can be switched off and on. Similarly, rotation of the sample in the field can modify its birefringence Δn. In addition, Δn can be increased by a factor of 4 in very modest fields with simultaneously enhancing the operating temperature by almost 100 K.

6.
J Phys Condens Matter ; 27(26): 262201, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26053273

RESUMO

EuTiO3 exhibits strong magneto-electric coupling at the onset of antiferromagnetic order below TN = 5.7 K. The dielectric permittivity drops at TN by 7% and recovers to normal values with increasing magnetic field. This effect is shown to stem from tiny lattice effects as seen in magnetostriction data which directly affect the soft optic mode and its polarizability coordinate. By combining experimental results with theory we show that marginal changes in the lattice parameter of the order of 0.01% have a more than 1000% effect on the transverse optic soft mode of ETO and thus easily induce a ferroelectric instability.

7.
J Phys Condens Matter ; 27(10): 105901, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25710127

RESUMO

PbHfO(3) is investigated theoretically and experimentally with respect to possible precursor effects starting in the paraelectric phase far above the cubic to tetragonal phase transition temperature. The theoretical modeling within the polarizability model predicts a giant softness of the system with spatially large polar and antiferrodistortive domain formation which compete with each other. These predictions are substantiated by the experiments, where the softness and the precursor effects are confirmed by birefringence, dielectric permittivity measurements and elastic properties by Brillouin scattering. The intermediate phase is found to have the polar nature confirmed by P-E hysteresis loop measurements, which is another manifestation of the competition between interrelated instabilities, namely a polar one and an antiferroelectric one.

8.
J Phys Condens Matter ; 26(27): 275402, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24925579

RESUMO

The lattice dynamics of Pb-containing perovskite oxides are investigated theoretically for the transition metal series Ti, Zr, Hf, in order to elucidate their commonalities and their distinctions. For all three compounds, pronounced precursor effects are found to their phase transition temperatures, which get more pronounced the heavier the central transition metal ion is. In addition, a competition between a polar and an antiferrodistortive instability is predicted to take place, which is strongly mass dependent. While in PbTiO3 the polar instability wins, both instabilities are active in PbZrO3, whereas in PbHfO3 the antiferrodistortive phase transition dominates the dynamics. For all three compounds, marked anomalies in the elastic constants are predicted, which are most pronounced in PbHfO3. Experimental results for elastic anomalies preceding the phase transition, which agree qualitatively with the model calculations are presented for PbHfO3.


Assuntos
Compostos de Cálcio/química , Chumbo/química , Modelos Químicos , Modelos Moleculares , Óxidos/química , Titânio/química , Simulação por Computador , Íons , Peso Molecular , Transição de Fase , Temperatura de Transição
9.
J Phys Condens Matter ; 25(21): 212202, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23644231

RESUMO

To better understand the phase transition mechanism of PbZrO3 (PZO), the lattice dynamics of this antiferroelectric compound are investigated within the polarizability model, with emphasis on the cubic to orthorhombic phase transition. Similarly to ferroelectric phase transitions in ABO3 perovskites, polar dynamical clusters develop and grow in size upon approaching T(C) from the high temperature side and never form a homogeneous state. Simultaneously, elastic anomalies set in and compete with polar cluster dynamics. These unusual dynamics are responsible for precursor effects that drive the PZO lattice towards an incipient ferroelectric state. Comparison of the model calculations with the temperature dependences of elastic coefficients measured on PZO single crystals reveals a striking similarity.

10.
J Phys Condens Matter ; 24(27): 273202, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22718683

RESUMO

This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation, nonlinear solutions of the model are also handled, which are of interest to the physics of relaxor ferroelectrics, domain wall motions, and incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.


Assuntos
Compostos de Cálcio/química , Eletricidade , Magnetismo , Modelos Teóricos , Óxidos/química , Fônons , Titânio/química
11.
J Phys Condens Matter ; 24(23): 233201, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22551702

RESUMO

In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA