Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(11): e2106322119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254912

RESUMO

SignificanceStream/river carbon dioxide (CO2) emission has significant spatial and seasonal variations critical for understanding its macroecosystem controls and plumbing of the terrestrial carbon budget. We relied on direct fluvial CO2 partial pressure measurements and seasonally varying gas transfer velocity and river network surface area estimates to resolve reach-level seasonal variations of the flux at the global scale. The percentage of terrestrial primary production (GPP) shunted into rivers that ultimately contributes to CO2 evasion increases with discharge across regions, due to a stronger response in fluvial CO2 evasion to discharge than GPP. This highlights the importance of hydrology, in particular water throughput, in terrestrial-fluvial carbon transfers and the need to account for this effect in plumbing the terrestrial carbon budget.

2.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324705

RESUMO

A significant amount of organic carbon is transported in dissolved form from soils to coastal oceans via inland water systems, bridging land and ocean carbon reservoirs. However, it has been discovered that the presence of terrigenous dissolved organic carbon (tDOC) in oceans is relatively limited. Therefore, understanding the fates of tDOC in coastal oceans is essential to account for carbon sequestration through land ecosystems and ensure accurate regional carbon budgeting. In this study, we developed a state-of-the-art modeling approach by coupling a land-to-ocean tDOC flux simulation model and a coastal tDOC tracking model to determine the potential fates of tDOC exported from three primary drainage basins in the Gulf of Maine (GoM). According to our findings, over half a year in the GoM, 56.4% of tDOC was mineralized. Biomineralization was responsible for 90% of that amount, with the remainder attributed to photomineralization. Additionally, 37% of the tDOC remained suspended in the GoM, and 6.6% was buried in the marine sediment.

3.
Environ Sci Technol ; 52(3): 1028-1035, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29313674

RESUMO

The flux of terrestrial C to rivers has increased relative to preindustrial levels, a fraction of which is aged dissolved organic C (DOC). In rivers, C is stored in sediments, exported to the ocean, or (bio)chemically processed and released as CO2. Disturbance changes land cover and hydrology, shifting potential sources and processing of DOC. To investigate the likely sources of aged DOC, we analyzed radiocarbon ages, chemical, and spectral properties of DOC and major ions from 19 rivers draining the coterminous U.S. and Arctic. DOC optics indicated that the majority is exported as aromatic, high molecular weight, modern molecules while aged DOC tended to consist of smaller, microbial degradation products. Aged DOC exports, observed regularly in arid basins and during base flow in arctic rivers, are associated with higher proportion of mineral weathering products, suggesting deeper flows paths. These patterns also indicate potential for production of microbial byproducts as DOC ages in soil and water with longer periods of time between production and transport. Thus, changes in hydrology associated with landscape alteration (e.g., tilling or shifting climates) that can result in deeper flow paths or longer residence times will likely lead to a greater proportion of aged carbon in riverine exports.


Assuntos
Carbono , Rios , Regiões Árticas , Hidrologia , Solo
4.
Ecol Appl ; 27(5): 1403-1420, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28376236

RESUMO

The magnitude of Alaska (AK) inland waters carbon (C) fluxes is likely to change in the future due to amplified climate warming impacts on the hydrology and biogeochemical processes in high latitude regions. Although current estimates of major aquatic C fluxes represent an essential baseline against which future change can be compared, a comprehensive assessment for AK has not yet been completed. To address this gap, we combined available data sets and applied consistent methodologies to estimate river lateral C export to the coast, river and lake carbon dioxide (CO2 ) and methane (CH4 ) emissions, and C burial in lakes for the six major hydrologic regions in the state. Estimated total aquatic C flux for AK was 41 Tg C/yr. Major components of this total flux, in Tg C/yr, were 18 for river lateral export, 17 for river CO2 emissions, and 8 for lake CO2 emissions. Lake C burial offset these fluxes by 2 Tg C/yr. River and lake CH4 emissions were 0.03 and 0.10 Tg C/yr, respectively. The Southeast and South central regions had the highest temperature, precipitation, terrestrial net primary productivity (NPP), and C yields (fluxes normalized to land area) were 77 and 42 g C·m-2 ·yr-1 , respectively. Lake CO2 emissions represented over half of the total aquatic flux from the Southwest (37 g C·m-2 ·yr-1 ). The North Slope, Northwest, and Yukon regions had lesser yields (11, 15, and 17 g C·m2 ·yr-1 ), but these estimates may be the most vulnerable to future climate change, because of the heightened sensitivity of arctic and boreal ecosystems to intensified warming. Total aquatic C yield for AK was 27 g C·m-2 ·yr-1 , which represented 16% of the estimated terrestrial NPP. Freshwater ecosystems represent a significant conduit for C loss, and a more comprehensive view of land-water-atmosphere interactions is necessary to predict future climate change impacts on the Alaskan ecosystem C balance.


Assuntos
Ciclo do Carbono , Lagos/química , Rios/química , Alaska , Gases de Efeito Estufa/análise , Metano/análise
5.
Environ Sci Technol ; 49(13): 7614-22, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26061185

RESUMO

Organic carbon (OC) burial in lacustrine sediments represents an important sink in the global carbon cycle; however, large-scale OC burial rates are poorly constrained, primarily because of the sparseness of available data sets. Here we present an analysis of OC burial rates in water bodies of the conterminous U.S. (CONUS) that takes advantage of recently developed national-scale data sets on reservoir sedimentation rates, sediment OC concentrations, lake OC burial rates, and water body distributions. We relate these data to basin characteristics and land use in a geostatistical analysis to develop an empirical model of OC burial in water bodies of the CONUS. Our results indicate that CONUS water bodies sequester 20.8 (95% CI: 9.4-65.8) Tg C yr(-1), and spatial patterns in OC burial are strongly influenced by water body type, size, and abundance; land use; and soil and vegetation characteristics in surrounding areas. Carbon burial is greatest in the central and southeastern regions of the CONUS, where cultivation and an abundance of small water bodies enhance accumulation of sediment and OC in aquatic environments.


Assuntos
Ciclo do Carbono , Modelos Teóricos , Carbono/análise , Ciências da Terra/métodos , Sedimentos Geológicos/análise , Lagos/análise , Solo , Estados Unidos
6.
Nat Commun ; 15(1): 726, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272881

RESUMO

Inland wetlands are critical carbon reservoirs storing 30% of global soil organic carbon (SOC) within 6% of the land surface. However, forested regions contain SOC-rich wetlands that are not included in current maps, which we refer to as 'cryptic carbon'. Here, to demonstrate the magnitude and distribution of cryptic carbon, we measure and map SOC stocks as a function of a continuous, upland-to-wetland gradient across the Hoh River Watershed (HRW) in the Pacific Northwest of the U.S., comprising 68,145 ha. Total catchment SOC at 30 cm depth (5.0 TgC) is between estimates from global SOC maps (GSOC: 3.9 TgC; SoilGrids: 7.8 TgC). For wetland SOC, our 1 m stock estimates are substantially higher (Mean: 259 MgC ha-1; Total: 1.7 TgC) compared to current wetland-specific SOC maps derived from a combination of U.S. national datasets (Mean: 184 MgC ha-1; Total: 0.3 TgC). We show that total unmapped or cryptic carbon is 1.5 TgC and when added to current estimates, increases the estimated wetland SOC stock to 1.8 TgC or by 482%, which highlights the vast stores of SOC that are not mapped and contained in unprotected and vulnerable wetlands.

7.
Nat Commun ; 12(1): 1730, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741930

RESUMO

Carbon dioxide (CO2) evasion from inland waters is an important component of the global carbon cycle. However, it remains unknown how global change affects CO2 emissions over longer time scales. Here, we present seasonal and annual fluxes of CO2 emissions from streams, rivers, lakes, and reservoirs throughout China and quantify their changes over the past three decades. We found that the CO2 emissions declined from 138 ± 31 Tg C yr-1 in the 1980s to 98 ± 19 Tg C yr-1 in the 2010s. Our results suggest that this unexpected decrease was driven by a combination of environmental alterations, including massive conversion of free-flowing rivers to reservoirs and widespread implementation of reforestation programs. Meanwhile, we found increasing CO2 emissions from the Tibetan Plateau inland waters, likely attributable to increased terrestrial deliveries of organic carbon and expanded surface area due to climate change. We suggest that the CO2 emissions from Chinese inland waters have greatly offset the terrestrial carbon sink and are therefore a key component of China's carbon budget.

9.
Water Res ; 180: 115772, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32402435

RESUMO

Quantifying metabolic rates in lakes and other aquatic ecosystems is a complex task, as methods are continually evolving and are not currently standardized. Recently, Peeters et al. presented a valuable simulated dataset that advances the field by comparing the strengths and limitations of individual and combined metabolic techniques. The authors conclude that calculating metabolic rates from point sampling and mass balancing of surface water oxygen concentration and isotope composition is flawed, because the technique does not capture sub-daily patterns of metabolic variability, which they argue invalidates past applications and interpretations. These conclusions are inconsistent with how the method has been used, and are based on a biased construction of scenarios and interpretation of model results, especially because their parameterization of the stable isotopic model employs input values that appear unrepresentative of most lake conditions. Here, we establish that 1) empirical evidence supports the isotopic approach's suitability to approximate daily or longer metabolic patterns in most lakes. 2) The authors' own simulations show agreement between metabolic estimates from point isotopic measurements and average metabolic rates under most scenarios. 3) The authors' invalidation of isotopic measurements are based on the most extreme model deviations observed in simulated hypereutrophic environments. While we welcome a critical evaluation of the isotopic approach, we argue that isotopic model uncertainty needs to be placed within an appropriate context. We emphasize that isotopic sampling and steady state metabolic modelling has a key role to play in constraining metabolic patterns in the global lake landscape, but that the research questions addressed with the method need to be commensurate with the limitations and uncertainties of the approach.


Assuntos
Ecossistema , Lagos , Isótopos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA