Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(10): e3001440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301995

RESUMO

The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Consumo de Oxigênio , Animais , Camundongos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Córtex Cerebral/metabolismo , Encéfalo/fisiologia , Circulação Cerebrovascular
2.
J Physiol ; 602(4): 683-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349000

RESUMO

Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.


Assuntos
Hipercapnia , Oxigênio , Humanos , Oxigênio/metabolismo , Dióxido de Carbono , Encéfalo/metabolismo , Hipóxia , Consumo de Oxigênio , Termodinâmica , Glucose/metabolismo , Altitude
3.
J Neurophysiol ; 131(1): 88-105, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056422

RESUMO

Neural population modeling, including the role of neural attractors, is a promising tool for understanding many aspects of brain function. We propose a modeling framework to connect the abstract variables used in modeling to recent cellular-level estimates of the bioenergetic costs of different aspects of neural activity, measured in ATP consumed per second per neuron. Based on recent work, an empirical reference for brain ATP use for the awake resting brain was estimated as ∼2 × 109 ATP/s-neuron across several mammalian species. The energetics framework was applied to the Wilson-Cowan (WC) model of two interacting populations of neurons, one excitatory (E) and one inhibitory (I). Attractors were considered to exhibit steady-state behavior and limit cycle behavior, both of which end when the excitatory stimulus ends, and sustained activity that persists after the stimulus ends. The energy cost of limit cycles, with oscillations much faster than the average neuronal firing rate of the population, is tracked more closely with the firing rate than the limit cycle frequency. Self-sustained firing driven by recurrent excitation, though, involves higher firing rates and a higher energy cost. As an example of a simple network in which each node is a WC model, a combination of three nodes can serve as a flexible circuit element that turns on with an oscillating output when input passes a threshold and then persists after the input ends (an "on-switch"), with moderate overall ATP use. The proposed framework can serve as a guide for anchoring neural population models to plausible bioenergetics requirements.NEW & NOTEWORTHY This work bridges two approaches for understanding brain function: cellular-level studies of the metabolic energy costs of different aspects of neural activity and neural population modeling, including the role of neural attractors. The proposed modeling framework connects energetic costs, in ATP consumed per second per neuron, to the more abstract variables used in neural population modeling. In particular, this work anchors potential neural attractors to physiologically plausible bioenergetics requirements.


Assuntos
Encéfalo , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/fisiologia , Trifosfato de Adenosina , Modelos Neurológicos , Mamíferos
4.
Neuroimage ; 207: 116342, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31722231

RESUMO

Quantitative functional magnetic resonance imaging methods make it possible to measure cerebral oxygen metabolism (CMRO2) in the human brain. Current methods require the subject to breathe special gas mixtures (hypercapnia and hyperoxia). We tested a noninvasive suite of methods to measure absolute CMRO2 in both baseline and dynamic activation states without the use of special gases: arterial spin labeling (ASL) to measure baseline and activation cerebral blood flow (CBF), with concurrent measurement of the blood oxygenation level dependent (BOLD) signal as a dynamic change in tissue R2*; VSEAN to estimate baseline O2 extraction fraction (OEF) from a measurement of venous blood R2, which in combination with the baseline CBF measurement yields an estimate of baseline CMRO2; and FLAIR-GESSE to measure tissue R2' to estimate the scaling parameter needed for calculating the change in CMRO2 in response to a stimulus with the calibrated BOLD method. Here we describe results for a study sample of 17 subjects (8 female, mean age = 25.3 years, range 21-31 years). The primary findings were that OEF values measured with the VSEAN method were in good agreement with previous PET findings, while estimates of the dynamic change in CMRO2 in response to a visual stimulus were in good agreement between the traditional hypercapnia calibration and calibration based on R2'. These results support the potential of gas-free methods for quantitative physiological measurements.


Assuntos
Encéfalo/irrigação sanguínea , Hipercapnia/fisiopatologia , Hiperóxia/fisiopatologia , Consumo de Oxigênio/fisiologia , Oxigênio/análise , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio/sangue , Adulto Jovem
5.
Neuroimage ; 185: 154-163, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315908

RESUMO

Cerebral blood flow (CBF) and blood oxygenation level dependent (BOLD) signal measurements make it possible to estimate steady-state changes in the cerebral metabolic rate of oxygen (CMRO2) with a calibrated BOLD method. However, extending this approach to measure the dynamics of CMRO2 requires an additional assumption: that deoxygenated cerebral blood volume (CBVdHb) follows CBF in a predictable way. A test-case for this assumption is the BOLD post-stimulus undershoot, for which one proposed explanation is a strong uncoupling of flow and blood volume with an elevated level of CBVdHb during the post-stimulus period compared to baseline due to slow blood volume recovery (Balloon Model). A challenge in testing this model is that CBVdHb differs from total blood volume, which can be measured with other techniques. In this study, the basic hypothesis of elevated CBVdHb during the undershoot was tested, based on the idea that the BOLD signal change when a subject switches from breathing a normoxic gas to breathing a hyperoxic gas is proportional to the absolute CBVdHb. In 19 subjects (8F), dual-echo BOLD responses were measured in primary visual cortex during a flickering radial checkerboard stimulus in normoxia, and the identical experiment was repeated in hyperoxia (50% O2/balance N2). The BOLD signal differences between normoxia and hyperoxia for the pre-stimulus baseline, stimulus, and post-stimulus periods were compared using an equivalent BOLD signal calculated from measured R2* changes to eliminate signal drifts. Relative to the pre-stimulus baseline, the average BOLD signal change from normoxia to hyperoxia was negative during the undershoot period (p = 0.0251), consistent with a reduction of CBVdHb and contrary to the prediction of the Balloon Model. Based on these results, the BOLD post-stimulus undershoot does not represent a case of strong uncoupling of CBVdHb and CBF, supporting the extension of current calibrated BOLD methods to estimate the dynamics of CMRO2.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Processamento de Imagem Assistida por Computador/métodos , Adulto , Encéfalo/fisiologia , Volume Sanguíneo Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Hiperóxia/metabolismo , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
6.
Magn Reson Med ; 81(6): 3865-3874, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659643

RESUMO

PURPOSE: The primary goal of this study was to estimate the value of ß , the exponent in the power law relating changes of the transverse relaxation rate and intra-extravascular local magnetic susceptibility differences as ΔR2∗∝(Δχ)ß . The secondary objective was to evaluate any differences that might exist in the value of ß obtained using a deoxyhemoglobin-weighted Δχ distribution versus a constant Δχ distribution assumed in earlier computations. The third objective was to estimate the value of ß that is relevant for methods based on susceptibility contrast agents with a concentration of Δχ higher than that used for BOLD fMRI calculations. METHODS: Our recently developed model of real microvascular anatomical networks is used to extend the original simplified Monte-Carlo simulations to compute ß from the first principles. RESULTS: Our results show that ß=1 for most BOLD fMRI measurements of real vascular networks, as opposed to earlier predictions of ß=1 .5 using uniform Δχ distributions. For perfusion or fMRI methods based on contrast agents, which generate larger values for Δχ , ß=1 for B0≤ 9.4 T, whereas at 14 T ß can drop below 1 and the variation across subjects is large, indicating that a lower concentration of contrast agent with a lower value of Δχ is desired for experiments at high B0 . CONCLUSION: These results improve our understanding of the relationship between R2* and the underlying microvascular properties. The findings will help to infer the cerebral metabolic rate of oxygen and cerebral blood volume from BOLD and perfusion MRI, respectively.


Assuntos
Imageamento por Ressonância Magnética/métodos , Microvasos/diagnóstico por imagem , Imagem de Perfusão/métodos , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Meios de Contraste , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Método de Monte Carlo
7.
J Neurosci ; 35(8): 3663-75, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716864

RESUMO

The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.


Assuntos
Encéfalo/irrigação sanguínea , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Cardiovasculares , Animais , Encéfalo/fisiologia , Corantes Fluorescentes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
8.
Neuroimage ; 129: 198-213, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26790354

RESUMO

Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Oxigênio/metabolismo , Adulto , Teorema de Bayes , Encéfalo/irrigação sanguínea , Calibragem , Circulação Cerebrovascular/fisiologia , Humanos , Hipercapnia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Consumo de Oxigênio/fisiologia
9.
Neuroimage ; 129: 159-174, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801605

RESUMO

Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and ß with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and ß. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism. We conclude that using the simplified calibration model results in a reduced bias in OEF0 estimates across a wide range of potential respiratory challenge experimental designs.


Assuntos
Encéfalo/metabolismo , Modelos Neurológicos , Consumo de Oxigênio/fisiologia , Encéfalo/irrigação sanguínea , Calibragem , Circulação Cerebrovascular/fisiologia , Simulação por Computador , Humanos , Hipercapnia/fisiopatologia , Hiperóxia/fisiopatologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Teóricos , Oxigênio/sangue
10.
Magn Reson Med ; 76(3): 838-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26451521

RESUMO

PURPOSE: In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled by inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as turbo-ASL and turbo-QUASAR. THEORY AND METHODS: A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS)-based WS inversion pulse was implemented. Its performance was tested in simulations and in phantom and human experiments and compared with an SS HS inversion pulse. RESULTS: Compared with the SS inversion pulse, the WS inversion pulse was capable of inducing different inversion thicknesses at different locations. It could be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. CONCLUSION: The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle and improving temporal resolution and SNR efficiency. Magn Reson Med 76:838-847, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Angiografia Cerebral/métodos , Circulação Cerebrovascular/fisiologia , Meios de Contraste/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Angiografia Cerebral/instrumentação , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/instrumentação , Modelos Cardiovasculares , Imagens de Fantasmas , Fluxo Pulsátil/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
11.
Nat Rev Neurosci ; 12(10): 585-601, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21897434

RESUMO

The hippocampal formation has been implicated in a growing number of disorders, from Alzheimer's disease and cognitive ageing to schizophrenia and depression. How can the hippocampal formation, a complex circuit that spans the temporal lobes, be involved in a range of such phenotypically diverse and mechanistically distinct disorders? Recent neuroimaging findings indicate that these disorders differentially target distinct subregions of the hippocampal circuit. In addition, some disorders are associated with hippocampal hypometabolism, whereas others show evidence of hypermetabolism. Interpreted in the context of the functional and molecular organization of the hippocampal circuit, these observations give rise to a unified pathophysiological framework of hippocampal dysfunction.


Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiopatologia , Transtornos Mentais/fisiopatologia , Neurônios/fisiologia , Humanos , Vias Neurais/fisiopatologia
12.
Neuroimage ; 116: 158-67, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25862267

RESUMO

Calibrated BOLD imaging, in which traditional measurements of the BOLD signal are combined with measurements of cerebral blood flow (CBF) within a BOLD biophysical model to estimate changes in oxygen metabolism (CMRO2), has been a valuable tool for untangling the physiological processes associated with neural stimulus-induced BOLD activation. However, to date this technique has largely been applied to the study of essentially steady-state physiological changes (baseline to activation) associated with block-design stimuli, and it is unclear whether this approach may be directly extended to the study of more dynamic, naturalistic experimental designs. In this study we tested an assumption underlying this technique whose validity is critical to the application of calibrated BOLD to the study of more dynamic stimuli, that information about fluctuations in venous cerebral blood volume (CBVv) can be captured indirectly by measuring fluctuations in CBF, making the independent measurement of CBVv unnecessary. To accomplish this, simultaneous arterial spin labeling and BOLD imaging were used to measure the CBF and BOLD responses to flickering checkerboards with contrasts that oscillated continuously with frequencies of ~0.02-0.16Hz. The measurements were then fit to a dynamic physiological model of the BOLD response in order to explore the range of consistent CMRO2 and CBVv responses. We found that the BOLD and CBF responses were most consistent with relatively tight dynamic coupling between CBF and CMRO2 and a CBVv response that was an order of magnitude slower than either CBF or CMRO2. This finding suggests that the assumption of tight flow-volume coupling may not be strictly valid, complicating the extension of calibrated BOLD to more naturalistic experimental designs.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiologia , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Modelos Neurológicos , Adulto , Feminino , Humanos , Masculino , Oxigênio/metabolismo , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
13.
Neuroimage ; 104: 156-62, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25312771

RESUMO

Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia , Córtex Visual/fisiologia , Adulto , Algoritmos , Química Encefálica/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa
14.
Neuroimage ; 104: 423-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25451475

RESUMO

The calibrated BOLD (blood oxygen level dependent) technique was developed to quantify the BOLD signal in terms of changes in oxygen metabolism. In order to achieve this a calibration experiment must be performed, which typically requires a hypercapnic gas mixture to be administered to the participant. However, an emerging technique seeks to perform this calibration without administering gases using a refocussing based calibration. Whilst hypercapnia calibration seeks to emulate the physical removal of deoxyhaemoglobin from the blood, the aim of refocussing based calibration is to refocus the dephasing effect of deoxyhaemoglobin on the MR signal using a spin echo. However, it is not possible to refocus all of the effects that contribute to the BOLD signal and a scale factor is required to estimate the BOLD scaling parameter M. In this study the feasibility of a refocussing based calibration was investigated. The scale factor relating the refocussing calibration to M was predicted by simulations to be approximately linear and empirically measured to be 0.88±0.36 for the visual cortex and 0.93±0.32 for a grey matter region of interest (mean±standard deviation). Refocussing based calibration is a promising approach for greatly simplifying the calibrated BOLD methodology by eliminating the need for the subject to breathe special gas mixtures, and potentially provides the basis for a wider implementation of quantitative functional MRI.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Hipercapnia/metabolismo , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo , Calibragem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino
15.
NMR Biomed ; 28(9): 1117-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26182890

RESUMO

The measurement of pulmonary perfusion (blood delivered to the capillary bed within a voxel) using arterial spin labeling (ASL) magnetic resonance imaging is often complicated by signal artifacts from conduit vessels that carry blood destined for voxels at a distant location in the lung. One approach to dealing with conduit vessel contributions involves the application of an absolute threshold on the ASL signal. While useful for identifying a subset of the most dominant high signal conduit image features, signal thresholding cannot discriminate between perfusion and conduit vessel contributions at intermediate and low signal. As an alternative, this article discusses a data-driven statistical approach based on statistical clustering for characterizing and discriminating between capillary perfusion and conduit vessel contributions over the full signal spectrum. An ASL flow image is constructed from the difference between a pair of tagged magnetic resonance images. However, when viewed as a bivariate projection that treats the image pair as independent measures (rather than the univariate quantity that results from the subtraction of the two images), the signal associated with capillary perfusion contributions is observed to cluster independently of the signal associated with conduit vessel contributions. Analyzing the observed clusters using a Gaussian mixture model makes it possible to discriminate between conduit vessel and capillary-perfusion-dominated signal contributions over the full signal spectrum of the ASL image. As a demonstration of feasibility, this study compares the proposed clustering approach with the standard absolute signal threshold strategy in a small number of test images.


Assuntos
Imageamento por Ressonância Magnética/métodos , Artéria Pulmonar/fisiologia , Circulação Pulmonar , Marcadores de Spin , Adulto , Análise por Conglomerados , Humanos , Masculino
16.
J Int Neuropsychol Soc ; 21(6): 399-411, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26156687

RESUMO

Human neuroimaging studies of reward processing typically involve tasks that engage decision-making processes in the dorsal striatum or focus upon the ventral striatum's response to feedback expectancy. These studies are often compared to the animal literature; however, some animal studies include both feedback and nonfeedback events that activate the dorsal striatum during feedback expectancy. Differences in task parameters, movement complexity, and motoric effort to attain rewards may partly explain ventral and dorsal striatal response differences across species. We, therefore, used a target capture task during functional neuroimaging that was inspired by a study of single cell modulation in the internal globus pallidus during reward-cued, rotational arm movements in nonhuman primates. In this functional magnetic resonance imaging study, participants used a fiberoptic joystick to make a rotational response to an instruction stimulus that indicated both a target location for a capture movement and whether or not the trial would end with feedback indicating either a small financial gain or a neutral outcome. Portions of the dorsal striatum and pallidum demonstrated greater neural activation to visual cues predicting potential gains relative to cues with no associated outcome. Furthermore, both striatal and pallidal regions displayed a greater response to financial gains relative to neutral outcomes. This reward-dependent modulation of dorsal striatal and pallidal activation in a target-capture task is consistent with findings from reward studies in animals, supporting the use of motorically complex tasks as translational paradigms to investigate the neural substrates of reward expectancy and outcome in humans.


Assuntos
Corpo Estriado/fisiologia , Sinais (Psicologia) , Globo Pálido/fisiologia , Movimento/fisiologia , Recompensa , Adolescente , Adulto , Animais , Biliverdina , Mapeamento Encefálico , Corpo Estriado/irrigação sanguínea , Retroalimentação Psicológica , Feminino , Globo Pálido/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio , Estimulação Luminosa , Tempo de Reação/fisiologia , Fatores de Tempo , Percepção Visual/fisiologia , Adulto Jovem
17.
Neuroimage ; 82: 182-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23732885

RESUMO

Prolonged visual stimulation results in neurophysiologic and hemodynamic adaptation. However, the hemodynamic adaptation appears to be small compared to neural adaptation. It is not clear how the cerebral metabolic rate of oxygen (CMRO2) is affected by adaptation. We measured cerebral blood flow (CBF) and CMRO2 change in responses to peripheral stimulation either continuously, or intermittently (on/off cycles). A linear system's response to the continuous input should be equal to the sum of the original response to the intermittent input and a version of that response shifted by half a cycle. The CMRO2 response showed a large non-linearity consistent with adaptation, the CBF response adapted to a lesser degree, and the blood oxygenation level dependent (BOLD) response was nearly linear. The metabolic response was coupled with a larger flow in the continuous condition than in the intermittent condition. Our results suggest that contrast adaptation improves energy economy of visual processing. However BOLD modulations may not accurately represent the underlying metabolic nonlinearity due to modulation of the coupling of blood flow and oxygen metabolism changes.


Assuntos
Adaptação Fisiológica/fisiologia , Circulação Cerebrovascular/fisiologia , Córtex Visual/irrigação sanguínea , Córtex Visual/metabolismo , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Hemodinâmica/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Estimulação Luminosa
18.
Neuroimage ; 72: 33-40, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370053

RESUMO

Hyperoxia is known to cause an increase in the blood oxygenation level dependent (BOLD) signal that is primarily localised to the venous vasculature. This contrast mechanism has been proposed as a way to measure venous cerebral blood volume (CBVv) without the need for more invasive contrast media. In the existing method the analysis modelled the data as a dynamic contrast agent experiment, with the assumption that the BOLD signal of tissue was dominated by intravascular signal. The effects on the accuracy of the method due to extravascular BOLD signal changes, as well as signal modulation by intersubject differences in baseline physiology, such as haematocrit and oxygen extraction fraction, have so far been unexplored. In this study the effect of extravascular signal and intersubject physiological variability was investigated by simulating the hyperoxia CBVv experiment using a detailed BOLD signal model. This analysis revealed substantial uncertainty in the measurement of CBVv using the existing analysis based on dynamic contrast agent experiments. Instead, the modelling showed a simple and direct relationship between the BOLD signal change and CBVv, and an alternative analysis method with much reduced uncertainty was proposed based on this finding. Both methods were tested experimentally, with the new method producing results that are consistent with the limited literature in this area.


Assuntos
Determinação do Volume Sanguíneo/métodos , Encéfalo/irrigação sanguínea , Hiperóxia/sangue , Imageamento por Ressonância Magnética/métodos , Adulto , Volume Sanguíneo , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Modelos Biológicos , Oxigênio/sangue
19.
Neuroimage ; 64: 104-11, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22963855

RESUMO

The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction-independent of details of the model-that if the CBF/CMRO(2) coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO(2) response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Oxigênio/sangue , Estimulação Luminosa/métodos , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
20.
Neuroimage ; 68: 221-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23238435

RESUMO

The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration.


Assuntos
Circulação Cerebrovascular/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/irrigação sanguínea , Córtex Visual/metabolismo , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio/sangue , Marcadores de Spin , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA