Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(9): 2300-2311, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340831

RESUMO

Plasma ceramide levels (henceforth, "ceramides") are biomarkers of some diseases that are comorbidities of Down syndrome (DS). We sought to determine if comorbidities in DS were associated with ceramides, studying a convenience cohort of 35 study participants, all ≥12 months old. To identify comorbidities, we reviewed the problem lists in electronic health records that were concurrent with sample collection. We placed clinically related comorbidities into one of five categories of comorbidities, henceforth, categories: obesity/overweight; autoimmune disease; congenital heart disease; bacterial infection; and central nervous system (CNS) condition. We measured the eight ceramides most frequently associated with disease using liquid chromatography-tandem mass spectrometry. We calculated a ceramide composite outcome score (CCOS) for each participant by normalizing each ceramide level to the mean for that level in the study population and then summing the normalized levels, to be proxy variable for all eight ceramides in aggregate. We used multivariable linear regression models adjusted for age and sex to test associations of categories with ceramides and with CCOSs. Post hoc, we realized that co-occurring comorbidities might interfere with establishing associations between predictor categories and ceramides and that stratified analyses might eliminate their influence on associations. We posited that CCOSs could be used to screen for associations of categories with multiple ceramides, since most diseases have been associated with more than one ceramide. We chose to omit in the stratified analyses the two categories that were the most different from one another in their associations with their CCOSs, having the most divergent regression coefficients (the highest positive and lowest negative coefficients). We first omitted one of these two divergent categories in a stratified analysis and tested in the remaining participants (those without a comorbidity in the interfering category) for associations of the other four categories with their CCOSs and then did the same for the other divergent category. In each of these two screening stratified analyses, we found one category was significantly associated with its CCOS. In the two identified categories, we then tested for associations with each of the eight ceramides, using the appropriate stratified analysis. Next, we sought to determine if the associations of the two categories with ceramides we found by omitting participants in the interfering categories held in our small sample for participants in the omitted categories as well. For each of the two categories, we therefore omitted participants without the interfering category and determined associations between the predictor category and individual ceramides in the remaining participants (those with a comorbidity in the interfering category). In the a priori analyses, autoimmune disease was inversely associated with C16 and CNS condition was inversely associated with C23. Obesity/overweight and CNS condition were the two categories with the most divergent regression coefficients (0.037 vs. -0.048). In post hoc stratified analyses, after omitting participants with obesity/overweight, thereby leaving participants without obesity/overweight, bacterial infection was associated with its CCOS and then with C14, C20, and C22. However, in the companion stratified analyses, omitting participants without obesity/overweight, thereby leaving participants with obesity/overweight, bacterial infection was not associated with any of the eight ceramides. Similarly, in post hoc stratified analyses after omitting participants with a CNS condition, thereby leaving participants without a CNS condition, obesity/overweight was associated with its CCOS and then with C14, C23, and C24. In the companion analyses, omitting participants without a CNS condition, thereby leaving participants with a CNS condition, obesity/overweight was inversely associated with C24.1. In conclusion, CNS and autoimmune disease were inversely associated with one ceramide each in a priori analyses. In post hoc analyses, we serendipitously omitted categories that interfered with associations of other categories with ceramides in stratified analyses. We found that bacterial infection was associated with three ceramides in participants without obesity/overweight and that obesity/overweight was associated with three ceramides in participants without a CNS condition. We therefore identified obesity/overweight and CNS conditions as potential confounders or effect modifiers for these associations. This is the first report of ceramides in DS and in human bacterial infection. Further study of ceramides in comorbidities of DS is justified.


Assuntos
Síndrome de Down , Sobrepeso , Humanos , Lactente , Ceramidas , Síndrome de Down/complicações , Síndrome de Down/epidemiologia , Comorbidade , Obesidade/complicações , Obesidade/epidemiologia
2.
J Inherit Metab Dis ; 45(6): 1039-1047, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047296

RESUMO

TRIT1 defect is a rare, autosomal-recessive disorder of transcription, initially described as a condition with developmental delay, myoclonic seizures, and abnormal mitochondrial function. Currently, only 13 patients have been reported. We reviewed the genetic, clinical, and metabolic aspects of the disease in all known patients, including two novel, unrelated TRIT1 cases with abnormalities in oxidative phosphorylation complexes I and IV in fibroblasts. Taken together the features of all 15 patients, TRIT1 defect could be identified as a potentially recognizable syndrome including myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and variable microcephaly, with normal lactate levels. Half of the patients had oxidative phosphorylation complex measurements and had multiple complex abnormalities.


Assuntos
Alquil e Aril Transferases , Epilepsias Mioclônicas , Transtornos do Desenvolvimento da Linguagem , Estrabismo , Humanos , Epilepsias Mioclônicas/genética , Fenótipo , Espasticidade Muscular , Lactatos , Alquil e Aril Transferases/genética
3.
Mol Genet Metab ; 132(1): 27-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129689

RESUMO

Pathogenic alterations in the DPM2 gene have been previously described in patients with hypotonia, progressive muscle weakness, absent psychomotor development, intractable seizures, and early death. We identified biallelic DPM2 variants in a 23-year-old male with truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting. His clinical presentation was much less severe than that of the three previously described patients. This is the second report on this ultra-rare disorder. Here we review the characteristics of previously reported individuals with a defect in the DPM complex while expanding the clinical phenotype of DPM2-Congenital Disorders of Glycosylation. In addition, we offer further insights into the pathomechanism of DPM2-CDG disorder by introducing glycomics and lipidomics analysis.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Manosiltransferases/genética , Adulto , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Debilidade Muscular/diagnóstico , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação/genética , Fenótipo
4.
Anal Bioanal Chem ; 410(27): 7121-7133, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30135996

RESUMO

Approximately 50% of patients with Graves' disease (GD) develop retracted eyelids with bulging eyes, known as Graves' ophthalmopathy (GO). However, no simple diagnostic blood marker for distinguishing GO from GD has been developed yet. The objective of this study was to conduct comprehensive profiling of lipids using plasma and urine samples from patients with GD and GO undergoing antithyroid therapy using nanoflow ultrahigh performance liquid chromatography electrospray ionization tandem mass spectrometry. Plasma (n = 86) and urine (n = 75) samples were collected from 23 patients with GD without GO, 31 patients with GO, and 32 healthy controls. Among 389 plasma and 273 urinary lipids that were structurally identified, 281 plasma and 191 urinary lipids were quantified in selected reaction monitoring mode. High-abundance lipids were significantly altered, indicating that the development of GD is evidently related to altered lipid metabolism in both plasma and urine. Several urinary lysophosphatidylcholine species were found to be increased (3- to 10-fold) in both GD and GO. While the overall lipid profiles between GD and GO were similar, significant changes (area under receiver operating curve > 0.8) in GO vs. GD were observed in a few lipid profiles: 58:7-TG and (16:1,18:0)-DG from plasma, 16:1-PC and 50:1-TG from urine, and d18:1-S1P from both plasma and urine samples. An altered metabolism of lipids associated with the additional development of ophthalmopathy was confirmed with the discovery of several candidate markers. These can be suggested as candidate markers for differentiating the state of GO and GD patients based on plasma or urinary lipidomic analysis. Graphical abstract.


Assuntos
Oftalmopatia de Graves/sangue , Oftalmopatia de Graves/urina , Lipídeos/sangue , Lipídeos/urina , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Oftalmopatia de Graves/diagnóstico , Oftalmopatia de Graves/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
5.
Anal Chem ; 89(9): 4969-4977, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28399627

RESUMO

In this study, lipid analysis based on isotope-labeled methlylation (ILM) was performed by nanoflow ultrahigh performance liquid chromatography-eletrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS) for enhanced detection and quantification of targeted phospholipids. ILM depends on methylation of phosphate groups by (trimethylsilyl)diazomethane, and the ILM based quantitation with reversed phase nUPLC-ESI-MS/MS provides advantages in PL profiling such as enhanced detectability of methylated PLs owing to increased hydrophobicity and substantial increase in resolution due to the increase of retention. Efficacy of ILM in nUPLC-ESI-MS/MS analysis was evaluated in the selected reaction monitoring (SRM) method by varying the mixing ratio of H-/D-methylated PL standards, which resulted in the successful quantification of 24 species, including phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylglycerol (PG), ceramide-1-phosphate (Cer1P), phosphoinositides, and cardiolipin (CL), with ∼6.6% variation in the calculated ratio of H-/D-methylated PLs. The method was applied to the lipid extracts from a DU145 cell line after D-allose treatment, resulting in the quantification of 83 PLs of which results were not statistically different from those obtained by conventional quantification methods. Morever, detection and quantification of CLs and PAs were evidenced to be highly effective when used with the ILM method as 43 CLs and 20 PAs from cellular lipid extracts were analyzed while only 18 CLs and 12 PAs were identified when conventional methods were carried out. This proves the ILM combined with LC-MS to be a promising method for analysis of the aforementioned classes of lipids. Overall, the study highlighted the applicability of targeted quantification by the ILM method in lipidomic analysis and demonstrated an improvement in the detection of less abundant anionic PLs.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Fosfolipídeos/análise , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Deutério , Diazometano/análogos & derivados , Diazometano/química , Humanos , Metilação , Fosfolipídeos/química , Compostos de Trimetilsilil/química
6.
Anal Chem ; 89(4): 2488-2496, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192938

RESUMO

Exosomes are membrane-bound extracellular vesicles involved in intercellular communication and tumor cell metastasis. In this study, flow field-flow fractionation (FlFFF) was utilized to separate urinary exosomes by size, demonstrating a significant difference in exosome sizes between healthy controls and patients with prostate cancer (PCa). Exosome fractions of different sizes were collected for microscopic analysis during an FlFFF run and evaluated with exosome marker proteins using Western blot analysis. The results indicated that exosomes of different sizes originated from different types of cells. Collected exosome fractions were further examined using nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS) for lipidomic analysis. A total of 162 lipids (from 286 identified) were quantified using a selected reaction monitoring (SRM) method. The overall amount of lipids increased by 1.5- to 2-fold in patients with PCa and degree of increase was more significant in the smaller fractions (diameter <150 nm) than in the larger ones (diameter >150 nm) some classes of lipids. In addition, neutral lipids like diacylglycerol (DAG) and triacylglycerol (TAG) decreased in all exosomes without size dependency. Moreover, a dramatic increase in 22:6/22:6-phosphatidylglycerol (PG) was observed and significant decrease in (16:0,16:0)- and (16:1, 18:1)-DAG species (nearly 5-fold) and high abundant TAG species (>2.5-fold) was observed in patients with PCa. The results of this study indicate that FlFFF can be employed for the high-speed screening of urinary exosome sizes in patients with PCa and lipidomic analysis of the fractionated exosomes has potential for developing and distinguishing biomarkers of PCa.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Exossomos/metabolismo , Lipídeos/análise , Neoplasias da Próstata/patologia , Espectrometria de Massas em Tandem , Adulto , Diglicerídeos/análise , Fracionamento por Campo e Fluxo , Humanos , Masculino , Nanotecnologia , Neoplasias da Próstata/metabolismo , Triglicerídeos/análise
7.
J Proteome Res ; 15(10): 3763-3772, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27581229

RESUMO

Lipids are important signaling molecules regulating biological processes under normal and diseased conditions. Although p53 mutation is well-known for causing cancer, the relationship between p53-related tumorigenesis and altered lipid profile is unclear. We profiled differences in lipid expressions in liver, lung, and kidney in p53 knockout (KO) mice by high-speed quantitative analysis of 320 lipids (399 species identified) using nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry (nUPLC-MS/MS). Lung tissues were most severely affected by the lack of p53 gene, as shown by significant reduction (24-44%, P < 0.05) in total phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), diacylglycerol (DG), and triacylglycerol (TG), and significant increases (30-50%) in phosphatidylserine (PS), phosphatidylinositol (PI), and monohexosylceramide (MHC). MHC levels increased in all tissues. Dihexosylceramide (DHC) level decreased only in kidney tissue. Most PI, PS, and phosphatidic acid (PA) species showing significant increases contained a saturated acyl chain (18:0) in lung and liver tissues. Neutral glycerolipids (16:0/22:0-DG and most TGs with saturated and monounsaturated acyl chains) decreased 2-4-fold in the liver tissue. Our results suggest that the lack of p53 and altered lipid profiles are closely related, but as their changes vary from one tissue to another, the lipid alterations are tissue-specific.


Assuntos
Rim/química , Metabolismo dos Lipídeos , Fígado/química , Pulmão/química , Proteína Supressora de Tumor p53/deficiência , Animais , Cromatografia Líquida , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Espectrometria de Massas em Tandem , Proteína Supressora de Tumor p53/genética
9.
Anal Bioanal Chem ; 408(9): 2265-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26873218

RESUMO

A deficiency of α-galactosidase A causes Fabry disease (FD) by disrupting lipid metabolism, especially trihexosylceramide (THC). Enzyme replacement therapy (ERT) is clinically offered to FD patients in an attempt to lower the accumulated lipids. Studies on specific types of lipids that are directly or indirectly altered by FD are very scarce, even though they are crucial in understanding the biological process linked to the pathogenesis of FD. We performed a comprehensive lipid profiling of plasma and urinary lipids from FD patients with nanoflow liquid chromatography electrospray-ionization tandem mass spectrometry (nLC-ESI-MS/MS) and identified 129 plasma and 111 urinary lipids. Among these, lipids that exhibited alternations (>twofold) in patients were selected as targets for selected reaction monitoring (SRM)-based high-speed quantitation using nanoflow ultra-performance LC-ESI-MS/MS (nUPLC-ESI-MS/MS) and 31 plasma and 26 urinary lipids showed significant elevation among FD patients. Higher percentages of sphingolipids (SLs; 48% for plasma and 42% for urine) were highly elevated in patients; whereas, a smaller percentage of phospholipids (PLs; 15% for plasma and 13% for urine) were significantly affected. Even though α-galactosidase A is reported to affect THC only, the results show that other classes of lipids (especially SLs) are changed as well, indicating that FD not only alters metabolism of THC but various classes of lipids too. Most lipids showing significant increases in relative amounts before ERT decreased after ERT, but overall, ERT influenced plasma lipids more than urinary lipids.


Assuntos
Cromatografia Líquida/métodos , Terapia de Reposição de Enzimas , Doença de Fabry/tratamento farmacológico , Lipídeos/sangue , Lipídeos/urina , Espectrometria de Massas por Ionização por Electrospray/métodos , alfa-Galactosidase/uso terapêutico , Estudos de Casos e Controles , Humanos
10.
Anal Bioanal Chem ; 408(18): 4975-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27178550

RESUMO

A rapid and high-throughput quantification method (approximately 300 lipids within 20 min) was established using nanoflow ultrahigh-pressure liquid chromatography-tandem mass spectrometry (nUPLC-ESI-MS/MS) with selective reaction monitoring (SRM) and applied to the quantitative profiling of the hepatic lipids of rabbits with different metabolic conditions that stimulate the development of nonalcoholic fatty liver disease (NAFLD). Among the metabolic conditions of rabbits in this study [inflammation (I), high-cholesterol diet (HC), and high-cholesterol diet combined with inflammation (HCI)], significant perturbation in hepatic lipidome (>3-fold and p < 0.01) was observed in the HC and HCI groups, while no single lipid showed a significant change in group I. In addition, this study revealed a dramatic increase (>2-fold) in relatively high-abundant monohexosylceramides (MHCs), sphingomyelins (SMs), and triacylglycerols (TGs) in both the HC and HCI groups, especially in MHCs as all 11 MHCs increased by larger than 3- to 12-fold. As the levels of the relatively high-abundant lipids in the above classes increased, the total lipidome level of each class increased significantly by approximately 2-fold to 5-fold. Other classes of lipids also generally increased, which was likely induced by the increase in mitogenic and nonapoptotic MHCs and SMs, as they promote cell proliferation. On the other hand, a slight decrease in the level of apoptotic ceramides (Cers) was observed, which agreed with the general increase in total lipid level. As distinct changes in hepatic lipidome were observed from HC groups, this suggests that HC or HCI is highly associated with NAFLD but not inflammation alone itself. Graphical Abstract Schematic of lipidomic analysis from hepatic tissue using nanoflow LC-ESI-MS/MS and nUPLC-ESI-MS/MS.


Assuntos
Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Metabolismo dos Lipídeos , Lipídeos/análise , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Nanotecnologia/métodos , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Anal Chem ; 87(2): 1266-73, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25494038

RESUMO

Oxidized phospholipids (Ox-PLs) are oxidatively modified PLs that are produced during the oxidation of lipoproteins; oxidation of low density lipoproteins especially is known to be associated with the development of coronary artery disease (CAD). In this study, different lipoprotein classes (high density, low density, and very low density lipoproteins) from pooled plasma of CAD patients and pooled plasma from healthy controls were size-sorted on a semipreparative scale by multiplexed hollow fiber flow field-flow fractionation (MxHF5), and Ox-PLs that were extracted from each lipoprotein fraction were quantified by nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). The present study showed that oxidation of lipoproteins occurred throughout all classes of lipoproteins with more Ox-PLs identified from CAD patient lipoproteins: molecular structures of 283 unique PL species (including 123 Ox-PLs) from controls and 315 (including 169 Ox-PLs) from patients were identified by data-dependent collision-induced dissociation experiments. It was shown that oxidation of PLs occurred primarily with hydroxylation of PL; in particular, a saturated acyl chain such as 16:0, 18:0, or even 18:1 at the sn-1 location of the glycerol backbone along with sn-2 acyl chains with at least two double bonds were identified. The acyl chain combinations commonly found for hydroxylated Ox-PLs in the lipoproteins of CAD patients were 16:0/18:2, 16:0/20:4, 18:0/18:2, and 18:0/20:4.


Assuntos
Doença da Artéria Coronariana/sangue , Lipoproteínas/sangue , Lipoproteínas/química , Fosfolipídeos/análise , Fosfolipídeos/sangue , Adulto , Cromatografia Líquida/métodos , Doença da Artéria Coronariana/metabolismo , Desenho de Equipamento , Fracionamento por Campo e Fluxo/instrumentação , Fracionamento por Campo e Fluxo/métodos , Humanos , Lipoproteínas/metabolismo , Pessoa de Meia-Idade , Oxirredução , Fosfolipídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
12.
Anal Chem ; 87(16): 8441-7, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26222150

RESUMO

The intertransformation of silver nanoparticles (AgNPs) and ionic silver (Ag(I)) in the environment determines their transport, uptake, and toxicity, demanding methods to simultaneously separate and quantify AgNPs and Ag(I). For the first time, hollow fiber flow field-flow fractionation (HF5) and minicolumn concentration were on-line coupled together with multiple detectors (including UV-vis spectrometry, dynamic light scattering, and inductively coupled plasma mass spectrometry) for full spectrum separation, characterization, and quantification of various Ag(I) species (i.e., free Ag(I), weak and strong Ag(I) complexes) and differently sized AgNPs. While HF5 was employed for filtration and fractionation of AgNPs (>2 nm), the minicolumn packed with Amberlite IR120 resin functioned to trap free Ag(I) or weak Ag(I) complexes coming from the radial flow of HF5 together with the strong Ag(I) complexes and tiny AgNPs (<2 nm), which were further discriminated in a second run of focusing by oxidizing >90% of tiny AgNPs to free Ag(I) and trapped in the minicolumn. The excellent performance was verified by the good agreement of the characterization results of AgNPs determined by this method with that by transmission electron microscopy, and the satisfactory recoveries (70.7-108%) for seven Ag species, including Ag(I), the adduct of Ag(I) and cysteine, and five AgNPs with nominal diameters of 1.4 nm, 10 nm, 20 nm, 40 nm, and 60 nm in surface water samples.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Espectrometria de Massas , Nanopartículas Metálicas/análise , Prata/análise , Cromatografia Líquida de Alta Pressão , Fracionamento por Campo e Fluxo/instrumentação , Íons/química , Luz , Tamanho da Partícula , Espalhamento de Radiação , Prata/isolamento & purificação , Espectrofotometria Ultravioleta , Água/química
13.
JHEP Rep ; 6(6): 101068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882601

RESUMO

Background & Aims: Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA. Methods: Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case-control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels. Results: Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA. Conclusions: The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis. Impact and implications: Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary cancer with limited treatment response, highlighting the need for a better understanding of the disease biology. Using a global metabolomics and lipidomics platform, we characterized distinct changes in the serum of 213 patients with CCA compared with healthy controls. The results of this study elucidate novel metabolic pathways in CCA. These findings benefit stakeholders in both the clinical and research realms by providing a foundation for improved disease diagnostics and identifying novel targets for therapeutic design.

14.
OMICS ; 27(7): 327-335, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463468

RESUMO

Lipids play crucial biological roles in health and disease, including in cancers. The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a pivotal promoter of cell growth and proliferation in various types of cancer. The somatic mutations in PIK3CA, the gene coding for the catalytic subunit p110α of PI3K, are frequently present in cancer cells, including breast cancer. Although the most prominent mutants, represented by single amino acid substitutions in the helical domain in exon 9 (E545K) and the kinase domain in exon 20 (H1047R) are known to cause a gain of PI3K function, activate AKT signaling and induce oncogenic transformation, the effect of these mutations on cellular lipid profiles has not been studied. We carried out untargeted lipidomics using liquid chromatography-tandem mass spectrometry to detect the lipid alterations in mammary gland epithelial MCF10A cells with isogenic knockin of these mutations. A total of 536 species of lipids were analyzed. We found that the levels of monosialogangliosides, signaling molecules known to enhance cell motility through PI3K/AKT pathway, were significantly higher in both mutants. In addition, triglycerides and ceramides, lipid molecules known to be involved in promoting lipid droplet production, cancer cell migration and invasion, were increased, whereas lysophosphatidylcholines and phosphatidylcholines that are known to inhibit cancer cell motility were decreased in both mutants. Our results provide novel insights into a potential link between altered lipid profile and carcinogenesis caused by the PIK3CA hotspot mutations. In addition, we suggest untargeted lipidomics offers prospects for precision/personalized medicine by unpacking new molecular substrates of cancer biology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Lipidômica , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Lipídeos
15.
Elife ; 122023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645408

RESUMO

Infantile neuroaxonal dystrophy (INAD) is caused by recessive variants in PLA2G6 and is a lethal pediatric neurodegenerative disorder. Loss of the Drosophila homolog of PLA2G6, leads to ceramide accumulation, lysosome expansion, and mitochondrial defects. Here, we report that retromer function, ceramide metabolism, the endolysosomal pathway, and mitochondrial morphology are affected in INAD patient-derived neurons. We show that in INAD mouse models, the same features are affected in Purkinje cells, arguing that the neuropathological mechanisms are evolutionary conserved and that these features can be used as biomarkers. We tested 20 drugs that target these pathways and found that Ambroxol, Desipramine, Azoramide, and Genistein alleviate neurodegenerative phenotypes in INAD flies and INAD patient-derived neural progenitor cells. We also develop an AAV-based gene therapy approach that delays neurodegeneration and prolongs lifespan in an INAD mouse model.


Assuntos
Proteínas de Drosophila , Distrofias Neuroaxonais , Transtornos Parkinsonianos , Camundongos , Animais , Neurônios/metabolismo , Transtornos Parkinsonianos/metabolismo , Drosophila/metabolismo , Ceramidas/metabolismo , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Fosfolipases A2 do Grupo VI/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
16.
Nat Metab ; 5(9): 1595-1614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653044

RESUMO

In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.


Assuntos
Adipogenia , Mitocôndrias , Criança , Animais , Humanos , Ceramidas , Drosophila , Ferro , Ácidos Graxos
17.
Analyst ; 137(2): 451-8, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22108841

RESUMO

The efficiencies of four different methods for the extraction of phospholipids (PLs) and lysophospholipids (LPLs) from human plasma samples were examined by comparing extraction recovery values using nanoflow liquid chromatography-electrospray ionization-mass spectrometry (nLC-ESI-MS). For recovery measurements, six PL and six LPL standards of different head groups were spiked into a human plasma sample, and the peak areas of each individual species after extraction were measured from the chromatograms of the nLC-ESI-MS runs. Recovery was calculated by comparing the peak area of an extracted standard species with that of the same species' spike after extraction of the same plasma sample. For lipid extraction, four different extraction methods were examined: three based on the Folch method with different organic solvents such as CHCl(3), methyl-tert-butyl ether (MTBE), and MTBE/CH(3)OH, and one relatively fast method involving CH(3)OH only. Evaluations of recovery showed that the modified Folch method with MTBE/CH(3)OH proposed in this study was effective for extracting most PL and LPL standards. Then, the four extraction methods were compared with the identified numbers of plasma PLs and LPLs, of which molecular structures can be confirmed by data-dependent, collision-induced dissociation experiments during nLC-ESI-MS-MS. These results demonstrated that the proposed method yielded the identification of 54 LPLs and 66 PLs from a plasma sample, which was the highest identification rate among the four methods.


Assuntos
Cromatografia Líquida , Lisofosfolipídeos/sangue , Lisofosfolipídeos/isolamento & purificação , Nanotecnologia , Fosfolipídeos/sangue , Fosfolipídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Humanos
18.
Sci Adv ; 8(28): eabn3326, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857503

RESUMO

Recessive variants in GBA1 cause Gaucher disease, a prevalent form of lysosome storage disease. GBA1 encodes a lysosomal enzyme that hydrolyzes glucosylceramide (GlcCer) into glucose and ceramide. Its loss causes lysosomal dysfunction and increased levels of GlcCer. We generated a null allele of the Drosophila ortholog Gba1b by inserting the Gal4 using CRISPR-Cas9. Here, we show that Gba1b is expressed in glia but not in neurons. Glial-specific knockdown recapitulates the defects found in Gba1b mutants, and these can be rescued by glial expression of human GBA1. We show that GlcCer is synthesized upon neuronal activity, and it is transported from neurons to glia through exosomes. Furthermore, we found that glial TGF-ß/BMP induces the transfer of GlcCer from neurons to glia and that the White protein, an ABCG transporter, promotes GlcCer trafficking to glial lysosomes for degradation.


Assuntos
Exossomos , Glucosilceramidas , Animais , Drosophila/metabolismo , Exossomos/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Humanos , Lisossomos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
19.
Lancet Digit Health ; 4(9): e632-e645, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835712

RESUMO

BACKGROUND: COVID-19 is a multi-system disorder with high variability in clinical outcomes among patients who are admitted to hospital. Although some cytokines such as interleukin (IL)-6 are believed to be associated with severity, there are no early biomarkers that can reliably predict patients who are more likely to have adverse outcomes. Thus, it is crucial to discover predictive markers of serious complications. METHODS: In this retrospective cohort study, we analysed samples from 455 participants with COVID-19 who had had a positive SARS-CoV-2 RT-PCR result between April 14, 2020, and Dec 1, 2020 and who had visited one of three Mayo Clinic sites in the USA (Minnesota, Arizona, or Florida) in the same period. These participants were assigned to three subgroups depending on disease severity as defined by the WHO ordinal scale of clinical improvement (outpatient, severe, or critical). Our control cohort comprised of 182 anonymised age-matched and sex-matched plasma samples that were available from the Mayo Clinic Biorepository and banked before the COVID-19 pandemic. We did a deep profiling of circulatory cytokines and other proteins, lipids, and metabolites from both cohorts. Most patient samples were collected before, or around the time of, hospital admission, representing ideal samples for predictive biomarker discovery. We used proximity extension assays to quantify cytokines and circulatory proteins and tandem mass spectrometry to measure lipids and metabolites. Biomarker discovery was done by applying an AutoGluon-tabular classifier to a multiomics dataset, producing a stacked ensemble of cutting-edge machine learning algorithms. Global proteomics and glycoproteomics on a subset of patient samples with matched pre-COVID-19 plasma samples was also done. FINDINGS: We quantified 1463 cytokines and circulatory proteins, along with 902 lipids and 1018 metabolites. By developing a machine-learning-based prediction model, a set of 102 biomarkers, which predicted severe and clinical COVID-19 outcomes better than the traditional set of cytokines, were discovered. These predictive biomarkers included several novel cytokines and other proteins, lipids, and metabolites. For example, altered amounts of C-type lectin domain family 6 member A (CLEC6A), ether phosphatidylethanolamine (P-18:1/18:1), and 2-hydroxydecanoate, as reported here, have not previously been associated with severity in COVID-19. Patient samples with matched pre-COVID-19 plasma samples showed similar trends in muti-omics signatures along with differences in glycoproteomics profile. INTERPRETATION: A multiomic molecular signature in the plasma of patients with COVID-19 before being admitted to hospital can be exploited to predict a more severe course of disease. Machine learning approaches can be applied to highly complex and multidimensional profiling data to reveal novel signatures of clinical use. The absence of validation in an independent cohort remains a major limitation of the study. FUNDING: Eric and Wendy Schmidt.


Assuntos
COVID-19 , Biomarcadores , COVID-19/diagnóstico , Estudos de Coortes , Citocinas , Humanos , Lipidômica/métodos , Lipídeos , Metabolômica/métodos , Pandemias , Prognóstico , Proteômica/métodos , Estudos Retrospectivos , SARS-CoV-2
20.
J Mass Spectrom Adv Clin Lab ; 22: 43-49, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34939054

RESUMO

Lipidomics is an important component of most multi-Omics systems biology studies and is largely driven by mass spectrometry (MS). Because lipids are tight regulators of multiple cellular functions, including energy homeostasis, membrane structures and cell signaling, lipidomics can provide a deeper understanding of variations underlying disease states and can become an even more powerful platform when combined with other omics, including genomics or proteomics. However, data analysis, especially in lipid annotation, poses challenges due to the heterogeneity of functional head groups and fatty acyl chains of varying hydrocarbon lengths and degrees of unsaturation. As there are various MS/MS fragmentation sites in lipids that are class-dependent, obtaining MS/MS data that includes as many fragment ions as possible is critical for structural characterization of lipids in lipidomics workflow. Here, we report an improved lipidomics methodology that resulted in increased coverage of lipidome using: 1) An automated data-driven MS/MS acquisition scheme in which inclusion and exclusion lists were automatically generated from the full scan MS of sample injections, followed by creation of updated lists over iterative analyses; and, 2) Incorporation of dual dissociation techniques of higher-energy collision dissociation and collision-induced dissociation for more accurate characterization of phosphatidylcholine species. Inclusion lists were created automatically based on full scan MS signals from samples and through iterative analyses, ions in the inclusion list that were fragmented were automatically moved to the exclusion list in subsequent runs. We confirmed that analytes with low MS response that did not undergo MS/MS events in conventional data-dependent analysis were successfully fragmented using this approach. Overall, this automated data-driven data acquisition approach resulted in a higher coverage of lipidome and the use of dual dissociation techniques provided additional information that was critical in characterizing the side chains of phosphatidylcholine species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA