Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 197(6): 2473-84, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527597

RESUMO

CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.


Assuntos
Grânulos Citoplasmáticos/imunologia , Endocitose , Linfócitos T Citotóxicos/imunologia , Animais , Clatrina/metabolismo , Grânulos Citoplasmáticos/fisiologia , Dinaminas/imunologia , Dinaminas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Exocitose , Granzimas/metabolismo , Sinapses Imunológicas , Camundongos , Proteínas R-SNARE/imunologia
2.
Cell Mol Life Sci ; 74(3): 399-408, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585956

RESUMO

Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution of two intracellular compartments, endosomes and cytotoxic granules, to the formation, function and disassembly of the immunological synapse. We highlight a recently proposed sequential process of fusion events at the IS upon target cell recognition. First, recycling endosomes fuse with the plasma membrane to deliver cargo required for the docking of cytotoxic granules. Second, cytotoxic granules arrive and fuse upon docking in a SNARE-dependent manner. Following fusion, membrane components of the cytotoxic granule are retrieved through endocytosis to ensure the fast, efficient serial killing of target cells that is characteristic of cytotoxic T lymphocytes.


Assuntos
Citotoxicidade Imunológica , Endocitose , Exocitose , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Animais , Grânulos Citoplasmáticos/imunologia , Endossomos/imunologia , Humanos , Lisossomos/imunologia , Fusão de Membrana , Proteínas SNARE/imunologia
3.
Front Mol Neurosci ; 15: 674243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493323

RESUMO

Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using - in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.

4.
Front Immunol ; 4: 411, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24348478

RESUMO

Cytotoxic T lymphocytes (CTLs) form an integral part of the adaptive immune system. Their main function is to eliminate bacteria- and virus-infected target cells by releasing perforin and granzymes (the lethal hit) contained within lytic granules (LGs), at the CTL-target-cell interface [the immunological synapse (IS)]. The formation of the IS as well as the final events at the IS leading to target-cell death are both highly complex and dynamic processes. In this review we highlight and discuss three high-resolution techniques that have proven invaluable in the effort to decipher key features of the mechanism of CTL effector function and in particular lytic granule maturation and fusion. Correlative light and electron microscopy allows the correlation between organelle morphology and localization of particular proteins, while total internal reflection fluorescence microscopy (TIRFM) enables the study of lytic granule dynamics at the IS in real time. The combination of TIRFM with patch-clamp membrane capacitance measurements finally provides a tool to quantify the size of fusing LGs at the IS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA