Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354078

RESUMO

We previously showed that microwave assisted synthesis is the best method for the synthesis of naphthoquinone amino acid and chloride-naphthoquinone amino acid derivatives by a complete evaluation of reaction conditions such as stoichiometry, bases, and pH influence. Following the same strategy, we synthesized chloride and non-chloride tyrosine, valine, and tryptophan-naphthoquinones achieving 85-95%, 80-92%, and 91-95% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone amino acid derivatives mainly display one redox reaction process. Overall, chloride naphthoquinone amino acid derivatives exhibited redox potential values (E1/2) more positive than non-chloride compounds. The six newly synthesized compounds were tested in HPV positive and negative as well as in immortal and tumorigenic cell lines to observe the effects in different cellular context simulating precancerous and cancerous status. A dose-response was achieved to determine the IC50 of six newly synthesized compounds in SiHa (Tumorigenic and HPV16 positive), CaLo (Tumorigenic and HPV18 positive), C33-A (Tumorigenic and HPV negative) and HaCaT (Keratinocytes immortal HPV negative) cell lines. Non-chloride tryptophan-naphthoquinone (3c) and chloride tyrosine-naphthoquine (4a) effects were more potent in tumorigenic SiHa, CaLo, and C33-A cells with respect to non-tumorigenic HaCaT cells. Interestingly, there seems to be a differential effect in non-chloride and chloride naphthoquinone amino acid derivatives in tumorigenic versus non tumorigenic cells. Considering all naphthoquinone amino acid derivatives that our group synthesized, it seems that hydrophobic and aromatic amino acids have the greatest effect on cell proliferation inhibition. These results show promising compounds for cervical cancer treatment.


Assuntos
Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Naftoquinonas/química , Triptofano/química , Tirosina/química , Neoplasias do Colo do Útero/patologia , Valina/química , Antineoplásicos/farmacologia , Carcinogênese , Linhagem Celular Tumoral , Cloretos/química , Cloretos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HaCaT , Humanos , Concentração Inibidora 50 , Micro-Ondas , Oxirredução , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/tratamento farmacológico
2.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696040

RESUMO

The micro RNA (miR)-34 family is composed of 5p and 3p strands of miR-34a, miR-34b, and miR-34c. The 5p strand's expression and function is studied in cervical cancer. The 3p strand's function and regulation remain to be elucidated. To study the function of the passenger strands of miR-34 family members, we overexpressed 5p and 3p strands using a synthetic miRNA in cervical cell lines. Cell proliferation was evaluated using crystal violet. Migration and invasion were tested using transwell assays, Western blot, and zymography. Possible specific targets and cell signaling were investigated for each strand. We found that miR-34a-5p inhibited proliferation, migration, and cell invasion accompanied by matrix metalloproteinase 9 (MMP9) activity and microtubule-associated protein 2 (MAP2) protein reduction. We also found that miR-34b-5p and miR-34c-5p inhibit proliferation and migration, but not invasion. In contrast, miR-34c-5p inhibits MMP9 activity and MAP2 protein, while miR-34b-5p has no effect on these genes. Furthermore, miR-34a-3p and miR-34b-3p inhibit proliferation and migration, but not invasion, despite the later reducing MMP2 activity, while miR-34c-3p inhibit proliferation, migration, and cell invasion accompanied by MMP9 activity and MAP2 protein inhibition. The difference in cellular processes, MMP2 and MMP9 activity, and MAP2 protein inhibition by miR-34 family members suggests the participation of other regulated genes. This study provides insights into the roles of passenger strands (strand*) of the miR-34 family in cervical cancer.


Assuntos
Movimento Celular/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Simulação por Computador , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA