Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nutr Res ; 107: 37-47, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174387

RESUMO

Maternal overnutrition during pregnancy leads to metabolic and immune alterations, including obesity, hyperphagia, and central and peripheral inflammation in offspring. Exposure to high-energy diets during pregnancy primes ghrelin sensitivity to overfeeding in the offspring at early stages of life. Overfeeding has also been partially related to the early stages of chronic stress. We hypothesized that maternal programming sensitizes ghrelin-induced overfeeding following a chronic stress schedule in the offspring. We used a nutritional programming model exposing female Wistar rats to a cafeteria (CAF) or control diet from prepregnancy to weaning. Male offspring were injected with ghrelin and then subjected to a chronic immobilization stress (CIS) schedule, after which food intake was determined. Hypothalamic and plasma accumulation of cytokines and cortisol were evaluated using BioPlex analysis and enzyme-linked immunosorbent assay, respectively. We found that rats exposed to the CAF diet exhibited overfeeding after fasting and peripheral ghrelin administration, which was exacerbated in rats exposed to chronic stress. Offspring exposed to the CAF diet accumulated pro-inflammatory interleukin-6 (IL-6), interferon-γ, and monocyte chemoattractant protein-1 cytokines in plasma, and IL-6 cytokine in the hypothalamus. Ghrelin-sensitive overfeeding in rats exposed to CAF diet + CIS display increased cortisol levels and decreased IL-6 accumulation in plasma. Together, our results suggest that maternal nutritional programming primes susceptibility to ghrelin response for overfeeding after a CIS schedule that mirrors plasma cortisol accumulation in male offspring.


Assuntos
Grelina , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Dieta , Hidrocortisona , Interleucina-6 , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Wistar , Estresse Fisiológico
2.
J Neurosci Res ; 86(8): 1734-47, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18311838

RESUMO

Ceramide is able to induce the apoptotic death of cerebellar granule cells (CGC) in culture. However, previous reports did not agree on whether ceramide-induced apoptosis of CGC requires caspase activation. Here we have shown that addition of C2-ceramide is able to produce extensive death of cultured CGC, which is associated with chromatin condensation, ladder-like DNA fragmentation, and activation of caspases. Our results show that C2-ceramide activates caspases-3, -9, and -2 but not caspases-1 and -8. Caspase-9 activation was associated with cytochrome c release from mitochondria toward the cytosol and was followed by activation of caspases-2 and -3. PARP proteolysis was also observed after caspase-3 and -2 activation. The involvement of caspases-9, -3, and -2 in ceramide-mediated apoptotic death of CGC was further supported by the use of specific inhibitors.


Assuntos
Apoptose/fisiologia , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Cerebelo/enzimologia , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Caspase 2/genética , Caspase 3/genética , Caspase 9/genética , Inibidores de Caspase , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Ratos , Esfingosina/fisiologia
3.
Open J Immunol ; 7(1): 1-17, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28944101

RESUMO

Abnormal NKG2D ligand expression has been implicated in the initiation and maintenance of various auto-inflammatory disorders including systemic lupus erythematosus (SLE). This study's goal was to identify the cellular contexts providing NKG2D ligands for stimulation of the immunosuppressive NKG2D+CD4 T cell subset that has been implicated in modulating juvenile-onset SLE disease activity. Although previous observations with NKG2D+CD4 T cells in healthy individuals pointed towards peripheral B cell and myeloid cell compartments as possible sites of enhanced NKG2DL presence, we found no evidence for a disease-associated increase of NKG2DL-positivity among juvenile-onset SLE B cells and monocytes. However, juvenile-onset SLE patient plasma and matched urine samples were positive by ELISA for the soluble form of the NKG2D ligands MICA and MICB, suggesting that kidney and/or peripheral blood may constitute the NKG2DL positive microenvironments driving NKG2D+CD4 T cell population expansions in this disease.

4.
Neoplasia ; 19(6): 471-482, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28499126

RESUMO

Cancer cells may co-opt the NKG2D lymphocyte receptor to complement the presence of its ligands for autonomous stimulation of oncogenic signaling. Previous studies raise the possibility that cancer cell NKG2D may induce high malignancy traits, but its full oncogenic impact is unknown. Using epithelial ovarian cancer as model setting, we show here that ex vivo NKG2D+ cancer cells have stem-like capacities, and provide formal in vivo evidence linking NKG2D stimulation with the development and maintenance of these functional states. NKG2D+ ovarian cancer cell populations harbor substantially greater capacities for self-renewing in vitro sphere formation and in vivo tumor initiation in immunodeficient (NOD scid gamma) mice than NKG2D- controls. Sphere formation and tumor initiation are impaired by NKG2D silencing or ligand blockade using antibodies or a newly designed pan ligand-masking NKG2D multimer. In further support of pathophysiological significance, a prospective study of 47 high-grade serous ovarian cancer cases revealed that the odds of disease recurrence were significantly greater and median progression-free survival rates higher among patients with above and below median NKG2D+ cancer cell frequencies, respectively. Collectively, our results define cancer cell NKG2D as an important regulator of tumor initiation in ovarian cancer and presumably other malignancies and thus challenge current efforts in immunotherapy aimed at enhancing NKG2D function.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos/administração & dosagem , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
PLoS One ; 9(10): e108942, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25291178

RESUMO

The stimulatory NKG2D receptor on lymphocytes promotes tumor immune surveillance by targeting ligands selectively induced on cancer cells. Progressing tumors counteract by employing tactics to disable lymphocyte NKG2D. This negative dynamic is escalated as some human cancer cells co-opt expression of NKG2D, thereby complementing the presence of its ligands for autonomous stimulation of oncogenic signaling. Clinical association data imply relationships between cancer cell NKG2D and metastatic disease. Here we show that NKG2D promotes cancer cell plasticity by induction of phenotypic, molecular, and functional signatures diagnostic of the epithelial-mesenchymal transition, and of stem-like traits via induction of Sox9, a key transcriptional regulator of breast stem cell maintenance. These findings obtained with model breast tumor lines and xenotransplants were recapitulated by ex vivo cancer cells from primary invasive breast carcinomas. Thus, NKG2D may have the capacity to drive high malignancy traits underlying metastatic disease.


Assuntos
Expressão Gênica , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
J Neurosci Res ; 71(3): 383-96, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12526027

RESUMO

Apoptotic death is a physiological process with regulatory mechanisms that are under the control of different molecules such as caspases. These are classified as initiators, such as caspases-8 and -9, and effectors, such as caspases-3 and -7. The participation of caspase-2 in the effector phase of apoptosis has been commonly observed in many cell types; however, it is able to act as an initiator caspase, depending on the apoptotic stimulus. Cerebellar granule cells (CGCs) undergo apoptosis when they are transferred from high potassium (K25) to low potassium (K5); this process seems to be mediated by caspase-3 activation. Staurosporine (STS), a full strength inhibitor of kinase proteins, also induces apoptosis in these cells. To characterize the caspase cascade induced by two stimuli in the same cell type we studied the activation of different caspases in CGCs treated with STS or K5. We found that both K5 and STS induce the activation of caspase-3. This result was confirmed by the proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), an endogenous caspase-3 substrate. Caspase-2 was activated preferentially by STS, which showed a temporal course suggesting that this caspase was induced before caspase-3. The initiator caspase-9 was also activated by both K5 and STS, as well as cytochrome-c release. The results obtained in this study suggest that STS and K5 induced different activation caspase pathways for apoptotic cell death of CGCs.


Assuntos
Caspases/metabolismo , Inibidores Enzimáticos/farmacologia , Potássio/administração & dosagem , Estaurosporina/farmacologia , Animais , Caspase 2 , Inibidores de Caspase , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ratos
7.
Eur J Neurosci ; 19(8): 2030-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15090030

RESUMO

The presence of 25 mm potassium (KCl) or N-methyl-d-aspartate (NMDA) in cultured cerebellar granule neurons (CGN) induces a trophic effect, including a specific regulation of the enzymes involved in the glutamate neurotransmitter synthesis. In this study we explored the effect of these conditions on the cytosolic and mitochondrial isoenzymes of aspartate aminotransferase (AAT), and phosphate-activated glutaminase (PAG) in CGN. We found that NMDA and KCl increased the AAT total activity by 40% and 70%, respectively. This effect was mediated by an augmentation in the protein levels (68% by NMDA, 58% by KCl). NMDA raised the Vmax and KCl raised both the maximol velocity (Vmax) and Michaelis constant (Km) of AAT. NMDA increased cytosolic AAT activity by 30% and mitochondrial activity by 70%; KCl increased cytosolic and mitochondrial AAT activity by 60% and 100%, respectively. This activation was also related to an increase in the protein levels. The effect of both conditions on the activity and protein levels were more pronounced in mitochondrial than cytosolic AAT and the increment elicited by KCl was higher in both isoforms than that produced by NMDA. The PAG and AAT mRNA levels were also regulated by incubation with NMDA and KCl similarly to the observed changes in the protein levels. These results suggest that NMDA receptor stimulation during CGN development differentially regulates the two AAT isoenzymes involved in the maturation of CGN and that the regulation of both AAT and PAG occurs also at the mRNA expression level, suggesting the involvement of a mechanism of gene expression regulation.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Ácido Glutâmico/biossíntese , N-Metilaspartato/farmacologia , Cloreto de Potássio/farmacologia , Animais , Aspartato Aminotransferases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Ácido Glutâmico/genética , Glutaminase/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA